Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

An organic-inorganic hybrid supramolecular framework material based on $[P_2W_{18}O_{62}]^{6-}$ cluster and Yb & Na complexes of pyridine 2,6-dicarboxylic acid: a catalyst for selective oxidation of sulfides in water with H_2O_2

Pulikanti Guruprasad Reddy, Narsimha Mamidi and Chullikkattil P. Pradeep*

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi - 175001, Himachal Pradesh, India.

E-mail: pradeep@iitmandi.ac.in; Fax: (+91) 1905 267 009.

Hybrid-1

Scheme 1. Synthetic scheme of hybrid 1. Colour code: WO_6 - dark blue polyhedra, PO_4 - pink polyhedra, Na - cyan, Yb - pale green, C - grey, O - red and N - blue.

Materials and methods

Na₁₂[P₂W₁₅O₅₉]·14H₂O,¹ 2-(ethylthio)aniline,² 2-(propylthio)aniline,² 2-(butylthio)aniline,² (4-(methylthio)phenyl)methanol,³ 4-(methylthio)phenyl methacrylate⁴ and 4-(methylthio)phenyl benzoate⁵ were prepared according to the reported procedures. Pyridine 2,6-dicarboxylic acid, ytterbium (iii) nitrate pentahydrate, 4-(methylthio)phenol, 4-(methylthio)aniline, ferrocene carboxaldehyde, 4-(methylthio)benzoic acid, 4-(methylthio)benzaldehyde, methyl(4-nitrophenyl)sulfane and methyl(ptolyl)sulfane were purchased from Sigma Aldrich. FT-IR spectra were recorded on a Perkin Elmer Spectrum 2 spectrophotometer using KBr pellets. ¹H and ¹³C NMR spectra were recorded on Jeol JNM ECX 500 MHz spectrometer in CDCl₃. TGA measurements were performed on NETZSCH STA 449 F1 JUPITER Series instrument. The heating rate employed was 10 °C/min under N₂ atmosphere over a temperature range of 25-1000 °C. HR-MS spectra of compounds were recorded on Bruker HD compact instrument. UV-Vis studies were carried out on SHIMADZU UV-2450 spectrophotometer using quartz cuvettes. Energy-dispersive X-ray spectroscopy (EDX) analyses of hybrid **1** were conducted on FEI-Nova nano SEM-450.

X-ray crystallography

Single crystal X-ray data were collected on Agilent Super Nova diffractometer, equipped with multilayer optics monochromatic dual source (Cu and Mo) and Eos CCD detector, using Mo-Kα (0.71073 Å) radiation at temperature 150 K. Data acquisition, data reduction and analytical face-index based absorption correction were performed using the program CrysAlisPRO.⁶ The structure was solved by Direct methods with ShelXS⁷ program and refined on F^2 by full matrix leastsquares techniques with ShelXL⁷ program in Olex² (v.1.2) program package.⁸ Anisotropic displacement parameters were applied for all the atoms, except for hydrogen atoms and some less intensely scattered atoms. The crystal and refinement data are summarized in Table 1. CCDC 1444174 contains the supplementary crystallographic data for this paper. These data Cambridge can be obtained free of charge from The Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cifdata.

Experimental section

1. Synthesis and characterization of hybrid 1

Pyridine-2,6-dicarboxylic acid (0.02321 g, 0.13904 mmol) and Yb(NO₃)₃·5H₂O (0.0534 g, 0.13904 mmol) were stirred together in 20 ml of distilled water for 24 hrs at room temperature. To the resultant turbid solution was added Na₁₂[P₂W₁₅O₅₆] (0.300 gm, 0.06952 mmol) and stirred again for 24 hrs. The clear solution thus obtained was kept for crystallization by slow evaporation. After 7 days, block color-less crystals were collected and dried overnight in desiccator. Yield: 0.170 gm (75 %) based on Na₁₂[P₂W₁₅O₅₆] used. FT-IR: v max/cm⁻¹ 3565, 1615, 1435, 1386, 1283, 1195, 1080, 1055, 1024, 939, 903, 824, 694 cm⁻¹.

(a) Infrared spectroscopy

The infrared spectrum of hybrid **1** agrees well with the proposed structure (see Figure S1). The broad bands at 3140 cm⁻¹ are ascribed to the presence of hydrogen bonded O-H functional groups of PDCH₂ and lattice water molecules.⁹ The appearance of vibrational peaks at 1613, 1575 and 1386 cm⁻¹ are due to the anti-symmetric and symmetric vibrations of carbonyl groups respectively. The peaks at 1435 and 1283 cm⁻¹ are due to the stretching vibrations of C=C and C-O groups.¹⁰ The bands at 1086 (P-O) and 950 (W=O), 907 and 700 (W-O-W) cm⁻¹ are due to the presence of $[P_2W_{18}O_{62}]^6$ POM units in hybrid **1**.¹¹

Figure S1. Infrared spectrum of hybrid 1

(b) UV-visible spectroscopy

The electronic properties of hybrid **1** were studied by UV-visible measurements on 10^{-5} M aqueous solutions (see Figure S2). The maximum absorption of hybrid **1**, λ max = 269, 277 nm, are due to the presence of (Yb(PDCH₂)₂(PDCH))²⁺ complex in the hybrid **1**.¹²

Figure S2. UV-Visible spectra of hybrid 1 at 10^{-5} M aqueous solution

(c) TGA analysis

To investigate the thermal stability of hybrid **1**, thermo gravimetric analysis was carried out and results are shown in Figure S3. The hybrid **1** shows two major weight losses in the temperature range between 25 °C to 650 °C. The first weight loss of 6.08 % (calcd. 6.12 %) was observed at 25-200 °C due to the loss of lattice water molecules and water molecules coordinated to the Na1 and Na2 atoms. The second weight loss of 20.34 % (calcd. 20.47 %) occurred between 200-650 °C due to the loss of four PDCH₂ based ligands present in the cationic unit. The TGA data is therefore in good agreement with other spectroscopic data and XRD analysis.

Figure S3. TGA profile of hybrid 1

(d) EDX analysis

EDX analyses of hybrid **1** were carried out to confirm the presence of Yb, Na etc elements. EDX analyses revealed that the hybrid **1** consists of following elements: W, O, Yb, P, C, Na and N elements (see Figure S4) as expected in agreement with other characterization data.

Figure S4. EDX data of hybrid 1

2. General procedure for the esterification $(I)^{13}$

Carboxylic acid (1.0 equiv), dicyclohexylcarbodiimide (1.5 equiv) and *N*,*N*-dimethylaminopyridine (0.1 equiv) were added to a solution of alcohol (1.0 equiv) in anhydrous dichloromethane under N_2 atmosphere. Stirring was continued for 16 h at room temperature. Upon completion of reaction (monitored by TLC), the reaction mixture was filtered and washed with dichloromethane (5 mL X 3). The crude reaction mixture was concentrated under reduced pressure and the residue was purified using column chromatography on silica gel with EtOAc/hexane (1-3%) as an eluent to afford corresponding esters. The average yields were 76 to 78%.

(a) Thiophene-3-ylmethyl 4-(methylthio)benzoate

Using the general procedure (I) and starting from 4-(methylthio)benzoic acid (500 mg, 2.98 mmol), thiophene-3-ylmethyl 4-(methylthio)benzoate (595 mg, 2.25 mmol, 76%) was isolated as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.95 (d, *J* = 8.9 Hz, 2H), 7.36 (s, 1H), 7.33 (d, *J* = 8.25 Hz, 1H), 7.28 (d, *J* = 8.95 Hz, 2H), 7.16 (d, *J* = 4.1 Hz, 1H), 5.34 (s, 2H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 166.16, 145.60, 136.89, 129.94, 127.57, 126.22, 126.10, 124.84, 124.22, 61.71, 14.77; ESI-MS: *m/z* [M+H] calcd. for C₁₃H₁₂O₂S₂: 264.36; found: 265.18.

(b) 4-(Methylthio)benzyl benzoate

Using the general procedure (I) and starting from (4-(methylthio)phenyl)methanol (500 mg, 3.25 mmol), 4-(methylthio)benzyl benzoate (600 mg, 2.52 mmol, 78%) was isolated as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 8.06 (d, *J* = 8.95 Hz, 2H), 7.55 (t, *J* = 7.55 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 5.31 (s, 2H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 166.40, 138.75, 133.02, 132.69, 130.03, 129.64, 128.88, 128.34, 126.49, 66.32, 15.69; ESI-MS: *m*/z [M+Na] calcd. for C₁₅H₁₄O₂S: 258.335; found: 281.05.

3. General procedure for the etherification (II)¹³

Sodium hydride (60% in mineral oil, 2.0 equiv) was taken into a flame-dried round-bottom flask under N₂ atmosphere and washed thrice with anhydrous hexane to remove mineral oil. Alcohol (1.0 equiv) in anhydrous THF (5 mL) was added drop wise to a stirred suspension of NaH in anhydrous THF (15 mL) at 0 °C and stirred for 1 h. Then aryl bromide or chloro bromo ethane or 1-bromohexane (1.1 equiv) was added drop wise to the reaction mixture and stirred overnight at room temperature. The reaction was quenched by a saturated solution of ammonium chloride and extracted with diethyl ether (3 × 10 ml). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with EtOAc/hexane (1-2%) as the eluent to afford corresponding ethers. The average yields were 75 - 85%.

(a) (4-((Benzyloxy)methyl)phenyl)(methyl)sulfane

Using the general procedure (II) and starting from (4-(methylthio)phenyl)methanol (500 mg, 3.25 mmol) (4-((benzyloxy)methyl)phenyl)(methyl)sulfane (620 mg, 2.54 mmol, 78%) was isolated as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.35 (d, *J* = 4.5 Hz, 4H),7.29 (d, *J* = 8.6 Hz, 2H),7.24 (t, *J* = 4.1 Hz, 3H), 4.53 (s, 2H), 4.51 (s, 2H), 2.24 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 138.14, 137.70, 135.09, 128.39, 127.77, 127.63, 126.62, 71.97, 71.62, 15.92; ESI-MS: *m*/*z* [M+2H] calcd. for C₁₅H₁₆OS: 244.352; found:246.23.

(b) (4-(2-Chloroethoxy)phenyl)(methyl)sulfane

Using the general procedure (II) and starting from 4-(methylthio)phenol (500 mg, 3.57 mmol), (4-(2-chloroethoxy)phenyl)(methyl)sulfane (600 mg, 2.97 mmol, 83%) was isolated as a white solid. ¹H NMR (500 MHz, CDCl₃) $\delta_{ppm}7.26$ (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 4.20 (t, J = 5.85 Hz, 2H), 3.80 (t, J = 6.0 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{ppm}156.61$, 129.85, 129.75, 115.41, 68.15, 41.83, 17.74; ESI-MS: m/z[M]calcd. for C₉H₁₁ClOS: 202.701; found: 202.03.

(c) Methyl (4-(pentyloxy)phenyl)sulfane

Using the general procedure (II) and starting from 4-(methylthio)phenol (500 mg, 3.57 mmol), methyl(4-(pentyloxy)phenyl)sulfane (600 mg, 2.86 mmol, 80%) was isolated as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.25 (d, *J* = 8.9 Hz, 2H), 6.83 (d, *J* = 8.9 Hz, 2H), 3.92 (t, *J* = 6.5 Hz, 2H), 2.43 (s, 3H), 1.78-1.75 (m, 2H), 1.43-1.36 (m, 4H), 0.92 (t, *J* = 7.2, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 157.72, 130.18, 128.38, 115.14, 68.09, 28.90, 28.15, 22.43, 18.10, 14.00; ESI-MS: *m/z*[M] calcd. for C₁₂H₈OS: 210.33; found: 210.14.

4. Procedure for the synthesis of ferrocene-4-(methylthio)aniline

Scheme 2. Synthetic route of ferrocene-4-(methylthio)aniline

Ferrocene carboxaldehyde (1 gm, 4.67 mmol, 1.0 equiv) and 4-(methylthio)aniline (0.650 gm, 4.67 mmo, 1.0 equiv) were dissolved in 50 ml of benzene in a 100 mL round bottom flask and refluxed the reaction mixture at 100 °C for 24 hrs using dean stark apparatus. After completion of the reaction (monitored by TLC), evacuated the benzene under reduced pressure (use fume hood for all these steps). After that, 40 mL of methanol was added into the same round bottom flask and dissolved the reaction mixture while stirring at room temperature. The reaction temperature was maintained at 0°C using an ice bath and sodium borohydride (0.621 gm, 16.35 mmol, 3.5 equiv) was added portion wise in 15 min duration and finally stirred for 2 hours. After completion of the reaction (monitored by TLC), reaction mixture was cautiously quenched by addition of 3 mL of water and extracted with dichloromethane (3×10 mL). The combined organic phases were dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified using column chromatography on silica gel with EtOAc/hexane (1:4) as the eluent to afford ferrocene-4-(methylthio)aniline (C₁₈H₁₉FeNS) as a yellow solid (0.947 gm, 60%). ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.16 (d, *J* = 8.2 Hz, 2H), 6.52 (d, *J* = 8.2 Hz, 2H), 4.15 (s, 2H), 4.09 (s, 4H), 4.06 (s, 2H), 3.8 (s, 2H), 2.33 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 146.99, 131.46, 124.17, 113.17, 86.03, 68.42, 68.03, 67.87, 43.28, 19.15; ESI-MS: *m/z*[M] calcd. for C₁₈H₁₉FeNS: 337.26; found:337.07.

5. General procedure for the oxidation of sulfides using hybrid 1 (III)

To a 10 mL Ace pressure tube were added sulfide (1.0 equiv), H_2O_2 (1.2 equiv), catalytic amount of hybrid 1 (0.012 mol%) and dissolved in 3 mL of recommended solvent (see main manuscript Table 1). Then the reaction mixture was stirred on a pre-heated hot plate at 85 °C for the mentioned time. After completion of the reaction (monitored by TLC), the reaction mixture was extracted with dichloromethane (3×5 mL). The combined organic phases were dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified using column chromatography on silica gel with DCM/MeOH as an eluent to afford desired sulfoxides.

Using the general procedure (III) and starting from 4-(methylthio)phenol (25 mg, 0.178 mmol), 4-(methylsulfinyl)phenol (28 mg, 0.179 mmol, 100 %) was isolated as a white solid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.52 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.63 (s, 1H), 2.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 159.5, 148.0, 126.0, 116.6, 43.4; ESI-MS: *m/z* [M+H] calcd. for C₇H₈O₂S: 156.20; found: 157.03.

(b) 2-(Ethylsulfinyl)aniline (4)

Using the general procedure (III) and starting from 2-(ethylthio)aniline (25 mg, 0.163 mmol), 2-(ethylsulfinyl)aniline (22.6 mg, 0.134 mmol, 85%) was isolated as a yellow oil; ¹H NMR (500 MHz, CDCl₃) $\delta_{ppm}7.23$ (d, J = 9.0 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 5.06 (brs, 2H), 3.24-3.21 (m, 1H), 3.14-3.12 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 147.7, 132.3, 127.3, 121.4, 117.3, 117.2, 45.0, 7.6;ESI-MS: m/z [M+H] calcd. for C₈H₁₁NOS: 169.24; found: 170.04.

(c) 2-(Propylsulfinyl)aniline (5)

Using the general procedure (III) and starting from 2-(propylthio)aniline (25 mg, 0.150 mmol), 2-(propylsulfinyl)aniline (20 mg, 0.109 mmol, 73%) was isolated as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.24 (d, *J* = 8.9 Hz, 1H), 7.20 (t, *J* = 6.5 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 6.00 (d, *J* = 7.9 Hz, 1H), 5.07 (brs, 2H), 3.31-3.25 (m, 1H), 3.03-2.97 (m, 1H), 1.74-1.62 (m, 2H), 1.06 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 147.7, 132.3, 127.1, 121.9, 117.4, 117.3, 53.2, 16.8, 13.1;ESI-MS: *m*/*z* [M+H] calcd. for C₉H₁₃NOS: 183.271; found: 184.06.

(d) 2-(Butylsulfinyl)aniline (6)

Using the general procedure (III) and starting from 2-(butylthio)aniline (25 mg, 0.138 mmol), 2-(butylsulfinyl)aniline (12.1 mg, 0.0614 mmol, 45%) was isolated as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.24 (d, *J* = 8.9 Hz, 1H), 7.20 (t, *J* = 6.5 Hz, 1H), 6.74 (t, *J* = 7.2 Hz, 1H), 6.68 (d, *J* = 8.3 Hz, 1H), 5.06 (brs, 2H), 3.32-3.26 (m, 1H), 3.06-3.00 (m, 1H), 1.68-1.66 (m, 1H), 1.63-1.56 (m, 1H), 1.49-1.42 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 147.7, 132.3, 127.3, 121.4, 117.3, 117.2, 51.10, 25.19, 21.78,13.62; ESI-MS: *m*/*z* [M+H] calcd. for C₁₀H₁₅NOS: 197.297; found: 198.09.

(e) 4-(Methylsulfinyl)aniline (7)

Using the general procedure (III) and starting from 4-(methylthio)aniline (25 mg, 0.180 mmol), 4-(methylsulfinyl)aniline (26.3 mg, 0.169 mmol, 94%) was isolated as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.45 (d, *J* = 9.5 Hz, 2H), 6.75 (d, *J* = 8.3 Hz, 2H), 4.06 (brs, 2H), 2.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 149.6, 133.02, 125.6, 115.0, 43.7; ESI-MS:*m*/*z* [M+H] calcd. for C₇H₉NOS: 155.217; found: 156.06.

(f) Ferrocene-4-(methylsulfinyl)aniline (8)

Using the general procedure (III) and starting from ferrocene-4-(methylthio)aniline ($C_{18}H_{19}FeNS$) (50 mg, 0.148 mmol), ferrocene-4-(methylsulfinyl)aniline ($C_{18}H_{19}FeNOS$) (19 mg, 0.053 mmol, 36%) was isolated as a yellow solid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.50 (d, *J* = 8.9 Hz, 2H), 6.71 (d, *J* = 9.0 Hz, 2H), 4.24 (s, 2H), 4.19 (s, 4H), 4.17 (s, 2H), 4.0 (s, 2H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 150.6, 131.6, 125.8, 115.0, 112.6, 85.3, 68.5, 68.2, 68.1, 43.6, 42.9; ESI-MS: *m*/*z* [M+H] calcd. for C₁₈H₁₉FeNOS: 353.260; found: 353.05.

(g) 4-(Methylsulfinyl)phenyl methacrylate (9)

Using the general procedure (III) and starting from 4-(methylthio)phenyl methacrylate (25 mg, 0.120 mmol), 4-(methylsulfinyl)phenyl methacrylate (24.4 gm, 0.109 mmol, 91%) was isolated as a white solid;¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.67 (d, J = 9.0 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 6.36 (s, 1H), 5.79 (s, 1H), 2.72 (s, 3H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 165.4, 153.0, 142.7, 135.4, 128.0, 125.0, 122.8, 44.1, 18.3; ESI-MS: *m/z* [M+H] calcd. for C₁₁H₁₂O₃S: 224.276; found:225.06.

(h) 4-(Methylsulfinyl)phenyl benzoate (10)

Using the general procedure (III) and starting from 4-(methylthio)phenyl benzoate (50 mg, 0.205 mmol), 4-(methylsulfinyl)phenyl benzoate (44.1 mg, 0.170 mmol, 83%) was isolated as a white solid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 8.22 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.9 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 2.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 164.8, 153.0, 142.9, 134, 130.3, 128.9, 128.7, 125.0, 122.9, 44.1; ESI-MS: m/z [M+H] calcd. for C₁₄H₁₂O₃S: 260.308; found: 261.04.

(i) 1-Methyl-4-(methylsulfinyl)benzene (11)

Using the general procedure (III) and starting from methyl(p-tolyl)sulfane (50 mg, 0.362 mmol), 1-methyl-4-(methylsulfinyl)benzene (56 mg, 0.362 mmol, 100%) was isolated as a colorless liquid;¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.54 (d, *J* = 8.25 Hz, 2H), 7.33 (d, *J* = 8.25 Hz, 2H), 2.70 (s, 3H), 2.41 (s,3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 142.26, 141.35, 129.43, 123.37, 43.81, 21.23; ESI-MS: *m*/z [M+H] calcd. for C₈H₈O₃S: 154.22; found: 155.04.

(j) 4-(Methylsulfinyl)benzaldehyde (12)

Using the general procedure (III) and starting from 4-(methylthio)benzaldehyde (50 mg, 0.329 mmol) 4-(methylsulfinyl)benzaldehyde (31.3 mg, 0.186 mmol, 57 %) was isolated as a yellow colored oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 10.1 (S, 1H), 8.06 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 2.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 191.1, 152.3, 138.0, 130.3, 124.1, 43.7; ESI-MS: m/z [M+H] calcd. for C₈H₈O₂S: 168.213; found: 169.09.

(k) 1-(2-Chloroethoxy)-4-(methylsulfinyl)benzene (13)

Using the general procedure (III) and starting from (4-(2-chloroethoxy)phenyl)(methyl)sulfane (50 mg, 0.248 mmol), 1-(2-chloroethoxy)-4-(methylsulfinyl)benzene (32.4 gm , 0.149 mmol, 60%) was isolated as a yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.61 (d, *J* = 8.9 Hz, 2H), 7.06 (d, *J* = 8.3 Hz, 2H), 4.28 (t, *J* = 5.5 Hz, 2H), 3.85 (t, *J* = 5.8 Hz, 2H), 2.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 160.5, 137.2, 125.5, 115.4, 68.1, 43.9, 41.6; ESI-MS: *m*/z [M+H] calcd. for C₉H₁₁ClO₂S: 218.70; found: 219.01.

(l) 1-(Methylsulfinyl)-4-(pentyloxy)benzene (14)

Using the general procedure (III) and starting from methyl(4-(pentyloxy)phenyl)sulfane (25 mg, 0.119 mmol), 1-(methylsulfinyl)-4-(pentyloxy)benzene (24.5 mg, 0.108 mmol, 91%) was isolated as a yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.58 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 4.00 (t, J = 6.53 Hz, 2H), 2.70 (s, 3H), 1.83-1.78 (m, 2H), 1.46-1.38 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 161.5, 136.0, 125.3, 115.2, 68.2, 43.8, 28.7, 28.0, 22.3, 13.9; ESI-MS: m/z [M+H] calcd. for C₁₂H₁₈O₂S: 226.335; found: 227.11.

(m) Thiophen-2-ylmethyl-4-(methylsulfinyl)benzoate (15)

Using the general procedure (III) and starting from thiophen-2-ylmethyl 4-(methylthio)benzoate (50 mg, 0.189 mmol), thiophen-2-ylmethyl 4-(methylsulfinyl)benzoate (40 mg, 0.142 mmol, 75%) was isolated as a yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 8.21 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 2H), 7.40 (s, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 5.5 Hz, 1H), 5.40 (s, 2H), 2.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 165.2, 150.8, 136.3, 132.5, 130.5, 127.6, 126.4, 124.7, 123.4, 62.1, 43.7; ESI-MS: *m/z* [M+H] calcd. for C₁₃H₁₂O₃S₂: 280.363; found: 281.02.

(n) 1-(Methylsulfinyl)-4-nitrobenzene (16)

Using the general procedure (III) and starting from methyl(4-nitrophenyl)sulfane (50 mg, 0.296 mmol), 1-(methylsulfinyl)-4-nitrobenzene (39.5 mg, 0.214 mmol, 72%) was isolated as a light yellow solid; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 8.40 (d, J = 8.95 Hz, 2H), 7.84 (d, J = 8.25 Hz, 2H), 2.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} ; 153.19, 149.47, 124.63, 124.47, 43.84; ESI-MS: m/z [M+H] calcd. for C₁₅H₂₂O₃S: 185.20; found: 186.01.

(o) (4-(Methylsulfinyl)phenyl)methanol (17)

Using the general procedure (III) and starting from (4-(methylthio)phenyl)methanol (50 mg, 0.325 mmol) (4-(methylsulfinyl)phenyl)methanol (55.3 mg, 0.325 mmol, 100%) was isolated as a colorless oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.55 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 4.70 (s, 2H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 145.0, 143.7, 127.5, 123.6, 64.1, 43.6;ESI-MS: *m/z* [M+H] calcd. for C₈H₁₀O₂S: 170.229; found: 171.05.

(p) (4-(Methylsulfinyl)benzyl benzoate (18)

Using the general procedure (III) and starting from 4-(methylthio)benzyl benzoate (50 mg, 0.194 mmol), 4-(methylsulfinyl)benzyl benzoate (46 mg, 0.167 mmol, 86%) was isolated as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ_{ppm} 8.08 (d, J = 7.55 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.62-7.56 (m, 3H), 7.45 (t, J = 7.9 Hz, 2H), 5.42 (s, 2H), 2.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 166.2, 145.4, 139.3, 133.2, 129.6, 128.8, 128.4, 123.8, 65.7, 43.9; ESI-MS: m/z [M+H] calcd. for C₁₅H₁₄O₃S: 274.335; found: 275.06.

(q) 1-((Benzyloxy)methyl-4-(methysulfinyl)benzene (19)

Using the general procedure (III) and starting from (4-((benzyloxy)methyl)phenyl)(methyl)sulfane (50 mg, 0.205 mmol), 1-((benzyloxy)methyl)-4-(methylsulfinyl)benzene (42 mg, 0.162 mmol, 79%) was isolated as a yellow oil;¹H NMR (500 MHz, CDCl₃) δ_{ppm} 7.64 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 4.8 Hz, 4H), 7.34-7.31 (m, 1H), 4.60, (s, 2H), 4.59 (s, 2H), 2.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ_{ppm} 144.7, 141.7, 137.7, 128.4, 128.3, 127.8, 127.7, 123.6, 72.5, 71.2, 43.9; ESI-MS: m/z [M+H] calcd. for C₁₅H₁₆O₂S: 260.351; found: 261.09.

-	-	
Empirical formula	C ₂₈ H ₄₀ N ₄ Na ₂ O ₅₈ P W ₉ Yb	
Formula weight	3265.28	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 18.2405(16) Å	
	$b = 35.036(2) \text{ Å}$ $\beta = 101.07$	′1(8)°.
	c = 22.8447(14) Å	
Volume	14327.7(18) Å ³	
Z	8	
Density (calculated)	3.027 Mg/m ³	
Absorption coefficient	15.827 mm ⁻¹	
F(000)	11784	
Crystal size	0.4668 x 0.0692 x 0.0437 mm ³	
Theta range for data collection	1.817 to 28.401°.	
Index ranges	-24<=h<=24, -44<=k<=17, -10<=l<=29	
Reflections collected	23691	
Independent reflections	15635 [R(int) = 0.0566]	
Completeness to theta = 25.242°	98.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	15635 / 0 / 864	
Goodness-of-fit on F ²	1.048	
Final R indices [I>2sigma(I)]	R1 = 0.0849, wR2 = 0.2288	
R indices (all data)	R1 = 0.1233, $wR2 = 0.2872$	
Extinction coefficient	n/a	
Largest diff. peak and hole 7.785 and -4.047 e.Å $^{-3}$		

Table S1. Crystal and structure refinement data for hybrid 1

Table S2. Bond lengths [Å] and angles $[\circ]$ for hybrid 1

W(6)-O(15)	1.688(18)	W(3)-O(1)	1.693(16)
W(6)-O(20)	1.832(18)	W(3)-O(27)#1	1.877(19)
W(6)-O(14)	1.871(15)	W(3)-O(6)	1.901(17)
W(6)-O(16)	1.940(16)	W(3)-O(2)	1.914(17)
W(6)-O(9)	2.033(15)	W(3)-O(4)	1.951(16)
W(6)-O(17)	2.355(14)	W(3)-O(7)	2.369(16)
W(5)-O(12)	1.692(14)	Yb(1)-O(30)	2.30(2)
W(5)-O(10)	1.894(15)	Yb(1)-O(40)	2.310(16)
W(5)-O(14)	1.906(15)	Yb(1)-O(32)	2.330(17)
W(5)-O(13)	1.912(15)	Yb(1)-O(34)	2.356(17)
W(5)-O(19)	1.924(14)	Yb(1)-O(38)	2.363(17)
W(5)-O(11)	2.372(14)	Yb(1)-N(1)	2.427(19)
W(4)-O(50)#1	1.716(15)	Yb(1)-N(2)	2.428(18)
W(4)-O(13)#1	1.856(15)	Yb(1)-Q(36)	2.435(17)
W(4) - O(22) # 1	1.874(15)	$Y_{b}(1) - N(3)$	2.44(2)
W(4) - O(19)	1.012(13)	$Y_{b}(1)-C(1)$	3 19(3)
W(4) - O(1)	1.912(15)	$V_{\rm b}(1) C(7)$	3.17(3)
W(4) - O(8) W(4) - O(11)	1.957(10)	P(1) O(17)	1.512(15)
W(4)-O(11)	2.331(14)	P(1) - O(17)	1.512(15)
W(8)-O(23)	1.090(16)	P(1) - O(11)	1.520(15)
W(8)-O(25)	1.889(16)	P(1) - O(24) # 1	1.529(13)
W(8)-O(28)	1.892(18)	P(1)-O(7)	1.576(18)
W(8)-O(22)	1.894(16)	O(15)-Na(1)	2.34(2)
W(8)-O(20)	1.933(18)	O(36)-C(14)	1.18(3)
W(8)-O(24)	2.373(13)	O(40)-C(21)	1.29(3)
W(7)-O(41)#2	1.706(15)	O(35)-C(14)	1.28(3)
W(7)-O(16)	1.860(15)	O(35)-H(35)	0.8200
W(7)-O(6)	1.893(16)	O(31)-C(7)	1.24(3)
W(7)-O(18)	1.920(14)	O(31)-Na(1)	2.29(3)
W(7)-O(21)	1.931(17)	O(27)-W(3)#1	1.877(19)
W(7)-O(17)	2.375(14)	O(41)-W(7)#2	1.706(15)
W(1)-O(5)	1.690(16)	O(41)-Na(1)	2.38(2)
W(1)-O(9)	1.785(15)	O(22)-W(4)#1	1.874(15)
W(1)-O(10)	1.891(14)	O(28)-W(2)#1	1.937(18)
W(1)-O(4)	1.916(16)	O(13)-W(4)#1	1.855(14)
W(1)-O(3)	1.956(17)	N(3)-C(16)	1.34(3)
W(1)-O(7)	2.388(14)	N(3)-C(20)	1.36(3)
W(9)-O(26)	1.709(16)	O(18)-W(9)#1	1.876(14)
W(9)-O(21)	1.839(17)	Na(1)-O(42)	2.27(4)
W(9)-O(18)#1	1.876(14)	Na(1)-O(43)	2.40(5)
W(9)-O(25)	1.917(15)	Na(1)-O(44)	2.61(5)
W(9)-O(27)	1.941(19)	O(33)-C(8)	1.26(3)
W(9)-O(24)	2.340(14)	O(33)-H(33)	0.8200
W(2)-O(51)#1	1.683(16)	O(37)-C(15)	1.29(3)
W(2)-O(8)	1.845(16)	O(37)-H(37)	0.8200
W(2)-O(3)	1.875(15)	N(2)-C(13)	1 33(4)
W(2)-O(28)#1	1.937(18)	N(2)-C(9)	1 34(3)
W(2)-O(2)	1.958(17)	$\Omega(32) - C(7)$	1.5-(3)
W(2)-O(7)	2 367(17)	O(34) - C(8)	1.20(3)
$(2)^{-}O(7)$	2.307(17)	$O(J=)^{-}O(0)$	1.47(3)

O(38)-C(15)	1.28(3)	C(24)-C(25)	1.46(5)
O(39)-C(21)	1.25(3) C(24)-H(24)		0.9300
O(39)-H(39)	0.8200	O(45)-C(28)	1.30(5)
N(1)-C(6)	1.30(3)	O(45)-Na(2)	2.45(6)
N(1)-C(2)	1.34(3)	O(56)-H(56A)	0.8501
O(30)-C(1)	1.27(4)	O(56)-H(56B)	0.8501
C(9)-C(10)	1.38(4)	C(25)-H(25)	0.9300
C(9)-C(8)	1.49(4)	N(4)-C(23)	1.27(5)
O(29)-C(1)	1.28(4)	N(4)-C(27)	1.37(5)
O(29)-H(29)	0.8200	N(4)-Na(2)	2.54(4)
C(12)-C(11)	1.40(4)	O(54)-H(54A)	0.8498
C(12)-C(13)	1.43(4)	O(54)-H(54B)	0.8499
C(12)-H(12)	0.9300	O(47)-H(47)	0.8200
C(10)-C(11)	1.35(4)	O(46)-Na(2)	2.57(4)
С(10)-Н(10)	0.9300	C(27)-C(28)	1.53(6)
C(13)-C(14)	1.45(4)	O(53)-H(53A)	0.8501
C(18)-C(19)	1.35(4)	O(53)-H(53B)	0.8498
C(18)-C(17)	1.39(4)	Na(2)-O(49)	2.27(5)
C(18)-H(18)	0.9300	Na(2)-O(48)	2.45(7)
C(6)-C(5)	1.39(4)	O(57)-H(57A)	0.8505
C(6)-C(7)	1.46(4)	O(57)-H(57B)	0.8492
C(2)-C(3)	1.35(4)	O(52)-H(52A)	0.8498
C(2)-C(1)	1.49(4)	O(52)-H(52B)	0.8503
C(5)-C(4)	1.35(5)		
C(5)-H(5)	0.9300	O(15)-W(6)-O(20)	99.1(8)
C(11)-H(11)	0.9300	O(15)-W(6)-O(14)	102.8(7)
C(4)-C(3)	1.38(4)	O(20)-W(6)-O(14)	91.6(7)
C(4)-H(4)	0.9300	O(15)-W(6)-O(16)	99.9(7)
C(19)-C(20)	1.41(3)	O(20)-W(6)-O(16)	92.3(7)
C(19)-H(19)	0.9300	O(14)-W(6)-O(16)	156.1(6)
O(24)-P(1)#1	1.529(13)	O(15)-W(6)-O(9)	96.2(8)
C(21)-C(20)	1.46(3)	O(20)-W(6)-O(9)	164.7(6)
C(15)-C(16)	1.44(4)	O(14)-W(6)-O(9)	84.0(6)
C(3)-H(3)	0.9300	O(16)-W(6)-O(9)	86.0(6)
C(17)-C(16)	1.37(4)	O(15)-W(6)-O(17)	172.1(7)
C(17)-H(17)	0.9300	O(20)-W(6)-O(17)	84.3(6)
O(44)-C(28)	1.30(6)	O(14)-W(6)-O(17)	84.2(6)
O(50)-W(4)#1	1.716(15)	O(16)-W(6)-O(17)	72.7(6)
O(51)-W(2)#1	1.683(16)	O(9)-W(6)-O(17)	80.7(6)
C(22)-O(47)	1.24(8)	O(12)-W(5)-O(10)	98.8(7)
C(22)-O(46)	1.40(8)	O(12)-W(5)-O(14)	103.1(7)
C(22)-C(23)	1.55(8)	O(10)-W(5)-O(14)	85.8(6)
O(55)-H(55A)	0.8497	O(12)-W(5)-O(13)	98.4(7)
O(55)-H(55B)	0.8503	O(10)-W(5)-O(13)	162.2(6)
C(26)-C(25)	1.28(5)	O(14)-W(5)-O(13)	86.0(6)
C(26)-C(27)	1.37(5)	O(12)-W(5)-O(19)	100.2(7)
C(26)-H(26)	0.9300	O(10)-W(5)-O(19)	92.8(6)
O(58)-H(58A)	0.8500	O(14)-W(5)-O(19)	156.6(6)
O(58)-H(58B)	0.8499	O(13)-W(5)-O(19)	88.5(6)
C(24)-C(23)	1.33(5)	O(12)-W(5)-O(11)	172.9(6)

O(10)-W(5)-O(11)	81.8(6)	O(5)-W(1)-O(10)	101.6(7)
O(14)-W(5)-O(11)	84.0(6)	O(9)-W(1)-O(10)	87.4(7)
O(13)-W(5)-O(11)	81.7(6)	O(5)-W(1)-O(4)	101.4(8)
O(19)-W(5)-O(11)	72.7(5)	O(9)-W(1)-O(4)	92.5(7)
O(50)#1-W(4)-O(13)#1	99.3(8)	O(10)-W(1)-O(4)	156.6(6)
O(50)#1-W(4)-O(22)#1	102.0(7)	O(5)-W(1)-O(3)	101.1(8)
O(13)#1-W(4)-O(22)#1	90.6(7)	O(9)-W(1)-O(3)	158.6(7)
O(50)#1-W(4)-O(19)	99.2(7)	O(10)-W(1)-O(3)	86.5(6)
O(13)#1-W(4)-O(19)	90.9(6)	O(4)-W(1)-O(3)	85.1(7)
O(22)#1-W(4)-O(19)	158.2(6)	O(5)-W(1)-O(7)	172.0(8)
O(50)#1-W(4)-O(8)	97.3(8)	O(9)-W(1)-O(7)	86.4(6)
O(13)#1-W(4)-O(8)	163.3(6)	O(10)-W(1)-O(7)	82.9(6)
O(22)#1-W(4)-O(8)	84.1(7)	O(4)-W(1)-O(7)	73.8(6)
O(19)-W(4)-O(8)	88.3(6)	O(3)-W(1)-O(7)	72.4(6)
O(50)#1-W(4)-O(11)	172.1(7)	O(26)-W(9)-O(21)	99.5(8)
O(13)#1-W(4)-O(11)	83.9(6)	O(26)-W(9)-O(18)#1	101.1(8)
O(22)#1-W(4)-O(11)	85.1(6)	O(21)-W(9)-O(18)#1	89.0(7)
O(19)-W(4)-O(11)	73.4(5)	O(26)-W(9)-O(25)	100.7(8)
O(8)-W(4)-O(11)	79.9(6)	O(21)-W(9)-O(25)	92.7(7)
O(23)-W(8)-O(25)	98.8(7)	O(18)#1-W(9)-O(25)	157.5(6)
O(23)-W(8)-O(28)	99.6(8)	O(26)-W(9)-O(27)	95.7(8)
O(25)-W(8)-O(28)	91.9(8)	O(21)-W(9)-O(27)	164.6(7)
O(23)-W(8)-O(22)	104.5(7)	O(18)#1-W(9)-O(27)	85.4(7)
O(25)-W(8)-O(22)	156.5(6)	O(25)-W(9)-O(27)	87.1(7)
O(28)-W(8)-O(22)	87.3(7)	O(26)-W(9)-O(24)	173.1(7)
O(23)-W(8)-O(20)	97.8(7)	O(21)-W(9)-O(24)	84.3(6)
O(25)-W(8)-O(20)	87.6(7)	O(18)#1-W(9)-O(24)	84.7(6)
O(28)-W(8)-O(20)	162.5(6)	O(25)-W(9)-O(24)	73.2(6)
O(22)-W(8)-O(20)	86.3(6)	O(27)-W(9)-O(24)	80.9(6)
O(23)-W(8)-O(24)	171.3(6)	O(51)#1-W(2)-O(8)	102.1(8)
O(25)-W(8)-O(24)	72.9(5)	O(51)#1-W(2)-O(3)	101.5(8)
O(28)-W(8)-O(24)	83.6(6)	O(8)-W(2)-O(3)	94.1(7)
O(22)-W(8)-O(24)	83.7(6)	O(51)#1-W(2)-O(28)#1	100.1(7)
O(20)-W(8)-O(24)	79.5(5)	O(8)-W(2)-O(28)#1	85.0(7)
O(41)#2-W(7)-O(16)	100.4(7)	O(3)-W(2)-O(28)#1	158.1(8)
O(41)#2-W(7)-O(6)	99.1(8)	O(51)#1-W(2)-O(2)	100.1(8)
O(16)-W(7)-O(6)	90.6(7)	O(8)-W(2)-O(2)	157.1(7)
O(41)#2-W(7)-O(18)	102.5(7)	O(3)-W(2)-O(2)	87.3(7)
O(16)-W(7)-O(18)	157.0(6)	O(28)#1-W(2)-O(2)	85.3(7)
O(6)-W(7)-O(18)	88.4(7)	O(51)#1-W(2)-O(7)	172.3(7)
O(41)#2-W(7)-O(21)	97.3(8)	O(8)-W(2)-O(7)	84.8(6)
O(16)-W(7)-O(21)	88.4(7)	O(3)-W(2)-O(7)	74.2(7)
O(6)-W(7)-O(21)	163.5(6)	O(28)#1-W(2)-O(7)	83.9(6)
O(18)-W(7)-O(21)	86.1(7)	O(2)-W(2)-O(7)	73.6(6)
O(41)#2-W(7)-O(17)	173.7(7)	O(1)-W(3)-O(27)#1	102.0(8)
O(16)-W(7)-O(17)	73.5(6)	O(1)-W(3)-O(6)	102.6(8)
O(6)-W(7)-O(17)	82.6(6)	O(27)#1-W(3)-O(6)	87.5(7)
O(18)-W(7)-O(17)	83.6(6)	O(1)-W(3)-O(2)	100.4(8)
O(21)-W(7)-O(17)	81.3(6)	O(27)#1-W(3)-O(2)	91.0(7)
O(5)-W(1)-O(9)	100.2(8)	O(6)-W(3)-O(2)	156.7(7)

O(1)-W(3)-O(4)	100.7(8)	N(1)-Yb(1)-C(1)	47.6(7)
O(27)#1-W(3)-O(4)	157.2(7)	N(2)-Yb(1)-C(1)	138.8(7)
O(6)-W(3)-O(4)	85.1(6)	O(36)-Yb(1)-C(1)	156.9(7)
O(2)-W(3)-O(4)	87.4(7)	N(3)-Yb(1)-C(1)	90.9(8)
O(1)-W(3)-O(7)	172.1(7)	O(30)-Yb(1)-C(7)	112.8(7)
O(27)#1-W(3)-O(7)	84.0(6)	O(40)-Yb(1)-C(7)	76.1(6)
O(6)-W(3)-O(7)	82.5(6)	O(32)-Yb(1)-C(7)	19.0(7)
O(2)-W(3)-O(7)	74.2(6)	O(34)-Yb(1)-C(7)	83.6(7)
O(4)-W(3)-O(7)	73.6(6)	O(38)-Yb(1)-C(7)	152.8(7)
O(30)-Yb(1)-O(40)	87.1(6)	N(1)-Yb(1)-C(7)	46.2(7)
O(30)-Yb(1)-O(32)	131.7(7)	N(2)-Yb(1)-C(7)	86.3(7)
O(40)-Yb(1)-O(32)	78.7(6)	O(36)-Yb(1)-C(7)	91.1(7)
O(30)-Yb(1)-O(34)	80.0(7)	N(3)-Yb(1)-C(7)	140.7(7)
O(40)-Yb(1)-O(34)	149.5(6)	C(1)-Yb(1)-C(7)	93.8(7)
O(32)-Yb(1)-O(34)	89.4(7)	O(17)-P(1)-O(11)	112.0(8)
O(30)-Yb(1)-O(38)	77.9(7)	O(17)-P(1)-O(24)#1	112.9(8)
O(40)-Yb(1)-O(38)	130.7(6)	O(11)-P(1)-O(24)#1	112.0(8)
O(32)-Yb(1)-O(38)	143.3(7)	O(17)-P(1)-O(7)	106.5(9)
O(34)-Yb(1)-O(38)	73.4(6)	O(11)-P(1)-O(7)	107.2(8)
O(30)-Yb(1)-N(1)	66.8(7)	O(24)#1-P(1)-O(7)	105.7(8)
O(40)-Yb(1)-N(1)	77.4(6)	P(1)-O(17)-W(6)	129.9(8)
O(32)-Yb(1)-N(1)	65.1(6)	P(1)-O(17)-W(7)	126.9(9)
O(34)-Yb(1)-N(1)	72.2(6)	W(6)-O(17)-W(7)	90.1(5)
O(38)-Yb(1)-N(1)	134.0(7)	P(1)-O(7)-W(2)	125.1(8)
O(30)-Yb(1)-N(2)	139.4(7)	P(1)-O(7)-W(3)	125.8(8)
O(40)-Yb(1)-N(2)	133.1(6)	W(2)-Q(7)-W(3)	90.9(6)
O(32)-Yb(1)-N(2)	72.0(6)	P(1)-O(7)-W(1)	123 6(9)
O(34)-Yb(1)-N(2)	66.4(7)	W(2)-O(7)-W(1)	90.2(5)
O(38)-Yb(1)-N(2)	71.4(7)	W(3)-Q(7)-W(1)	90.6(5)
N(1)-Yb(1)-N(2)	119 3(6)	W(6) - O(15) - Na(1)	154 0(12)
O(30)-Yb(1)-O(36)	144 6(6)	W(6) - O(14) - W(5)	152.9(9)
O(40)-Yb(1)- $O(36)$	73.2(6)	W(2)-O(3)-W(1)	123.1(10)
O(32)-Yb(1)-O(36)	73.2(6)	W(2) = O(2) + W(3) W(6) - O(20) - W(8)	162 5(9)
O(34)-Yb(1)-O(36)	130.4(7)	W(0) = O(20) + W(0) W(1) - O(9) - W(6)	150 3(9)
O(38)-Yb(1)-O(36)	92.7(6)	W(2) = O(25) - W(9)	123.3(7)
N(1)-Yb(1)-O(36)	133.0(6)	C(14)-O(36)-Yb(1)	122.0(18)
N(2)-Yb(1)-O(36)	64 0(6)	C(21)- $O(40)$ -Yb(1)	126.0(15)
O(30)-Yb(1)-N(3)	73 7(7)	W(1)-O(10)-W(5)	151 1(9)
O(40)-Yb(1)-N(3)	65 4(7)	C(14)-O(35)-H(35)	109.5
O(32)-Yb(1)-N(3)	135 5(7)	W(4)-O(19)-W(5)	122 8(7)
O(34)-Yb(1)-N(3)	134.6(7)	W(9) - O(21) - W(7)	163 1(10)
O(38) - Yb(1) - N(3)	65 3(7)	W(2) = O(8) = W(4)	154.0(10)
N(1) Vb(1) N(3)	1262(7)	$C(7) O(31) N_2(1)$	131(2)
N(2) Vb(1) N(3)	114 5(7)	W(3)#1 $O(27)$ $W(0)$	151(2)
$\Omega(36) \cdot Vh(1) \cdot N(3)$	114.3(7) 71 $A(7)$	W(3)=V(2) W(7)=V(2)	172 0(10)
O(30) - 10(1) - N(3)	10.4(7)	W(7) = O(41) - Na(1) W(7) = O(16) = W(6)	172.0(10)
O(40)-Vb(1) $O(1)$	17.4(<i>1</i>) 86 1(7)	W(A) #1 O(22) W(9)	123.3(8)
O(32) Vb(1) $O(1)$	00.1(7)	W(4) = 1 - O(22) - W(6) W(9) = O(29) = W(2) + 1	131.0(8)
O(32) = I U(1) - O(1)	112.0(7)	W(0) - O(20) - W(2) = 1 W(4) = 1 - O(12) = W(5)	148.7(9)
O(34) - ID(1) - O(1)	/2./(8)	W(4)#1- $U(13)$ - $W(5)$	163.6(9)
U(38) - YD(1) - U(1)	93.1(/)	U(16)-N(3)-U(20)	121(2)

C(16)-N(3)-Yb(1)	120.3(18)	N(1)-C(6)-C(5)	120(3)
C(20)-N(3)-Yb(1)	118.7(16)	N(1)-C(6)-C(7)	114(2)
W(3)-O(2)-W(2)	121.3(9)	C(5)-C(6)-C(7)	125(3)
W(9)#1-O(18)-W(7)	150.8(9)	N(1)-C(2)-C(3)	120(3)
O(42)-Na(1)-O(31)	99.3(13)	N(1)-C(2)-C(1)	114(2)
O(42)-Na(1)-O(15)	176(2)	C(3)-C(2)-C(1)	126(3)
O(31)-Na(1)-O(15)	82.7(9)	C(4)-C(5)-C(6)	118(3)
O(42)-Na(1)-O(41)	98.5(12)	C(4)-C(5)-H(5)	120.9
O(31)-Na(1)-O(41)	155.0(13)	C(6)-C(5)-H(5)	120.7
O(15)-Na(1)-O(41)	80.5(7)	C(10)-C(11)-C(12)	122(3)
O(42)-Na(1)-O(43)	88(2)	C(10)-C(11)-H(11)	119.1
O(31)-Na(1)-O(43)	109.5(15)	C(12)-C(11)-H(11)	119.2
O(15)-Na(1)-O(43)	88.2(13)	C(5)-C(4)-C(3)	120(3)
O(41)-Na(1)-O(43)	88.4(14)	C(5)-C(4)-H(4)	119.9
O(42)-Na(1)-O(44)	85(2)	C(3)-C(4)-H(4)	120.0
O(31)-Na(1)-O(44)	80.6(13)	O(29)-C(1)-O(30)	125(3)
O(15)-Na(1)-O(44)	98.5(13)	O(29)-C(1)-C(2)	118(3)
O(41)-Na(1)-O(44)	83.7(12)	O(30)-C(1)-C(2)	117(3)
O(43)-Na(1)-O(44)	168.6(16)	O(29)-C(1)-Yb(1)	161(2)
C(8)-O(33)-H(33)	109.4	O(30)-C(1)-Yb(1)	37.0(14)
W(7)-O(6)-W(3)	149.1(9)	C(2)-C(1)-Yb(1)	80.4(16)
C(15)-O(37)-H(37)	109.5	C(18)-C(19)-C(20)	120(3)
C(13)-N(2)-C(9)	120(2)	C(18)-C(19)-H(19)	119.8
C(13)-N(2)-Yb(1)	120.5(16)	C(20)-C(19)-H(19)	119.9
C(9)-N(2)-Yb(1)	119.0(18)	P(1)-O(11)-W(4)	128.9(8)
C(7)-O(32)-Yb(1)	123.9(17)	P(1)-O(11)-W(5)	127.3(8)
C(8)-O(34)-Yb(1)	123.0(18)	W(4)-O(11)-W(5)	91.0(5)
C(15)-O(38)-Yb(1)	121.8(16)	P(1)#1-O(24)-W(9)	128.9(8)
C(21)-O(39)-H(39)	109.5	P(1)#1-O(24)-W(8)	127.5(8)
C(6)-N(1)-C(2)	122(2)	W(9)-O(24)-W(8)	90.5(4)
C(6)-N(1)-Yb(1)	119.8(17)	O(39)-C(21)-O(40)	125(2)
C(2)-N(1)-Yb(1)	118.2(15)	O(39)-C(21)-C(20)	120(2)
W(1)-O(4)-W(3)	122.0(8)	O(40)-C(21)-C(20)	115(2)
C(1)-O(30)-Yb(1)	123.6(19)	O(33)-C(8)-O(34)	122(3)
N(2)-C(9)-C(10)	122(3)	O(33)-C(8)-C(9)	120(3)
N(2)-C(9)-C(8)	114(2)	O(34)-C(8)-C(9)	117(2)
C(10)-C(9)-C(8)	124(2)	O(31)-C(7)-O(32)	123(3)
C(1)-O(29)-H(29)	109.5	O(31)-C(7)-C(6)	120(3)
C(11)-C(12)-C(13)	117(3)	O(32)-C(7)-C(6)	117(3)
C(11)-C(12)-H(12)	121.6	O(31)-C(7)-Yb(1)	160(2)
C(13)-C(12)-H(12)	121.6	O(32)-C(7)-Yb(1)	37.1(12)
C(11)-C(10)-C(9)	118(2)	C(6)-C(7)-Yb(1)	79.6(15)
C(11)-C(10)-H(10)	120.8	N(3)-C(20)-C(19)	119(2)
C(9)-C(10)-H(10)	120.8	N(3)-C(20)-C(21)	114(2)
N(2)-C(13)-C(12)	120(2)	C(19)-C(20)-C(21)	126(2)
N(2)-C(13)-C(14)	113(3)	O(36)-C(14)-O(35)	126(2)
C(12)-C(13)-C(14)	127(3)	O(36)-C(14)-C(13)	120(3)
C(19)-C(18)-C(17)	118(3)	O(35)-C(14)-C(13)	113(2)
C(19)-C(18)-H(18)	120.9	O(38)-C(15)-O(37)	123(2)
C(17)-C(18)-H(18)	120.8	O(38)-C(15)-C(16)	120(2)

O(37)-C(15)-C(16)	117(2)	C(23)-N(4)-Na(2)	125(3)
C(2)-C(3)-C(4)	119(3)	C(27)-N(4)-Na(2)	120(3)
C(2)-C(3)-H(3)	120.5	H(54A)-O(54)-H(54B)	109.5
C(4)-C(3)-H(3)	120.5	N(4)-C(23)-C(24)	131(4)
C(16)-C(17)-C(18)	121(3)	N(4)-C(23)-C(22)	116(5)
C(16)-C(17)-H(17)	119.3	C(24)-C(23)-C(22)	113(5)
C(18)-C(17)-H(17)	119.4	C(22)-O(47)-H(47)	109.1
N(3)-C(16)-C(17)	120(3)	C(22)-O(46)-Na(2)	121(4)
N(3)-C(16)-C(15)	113(2)	C(26)-C(27)-N(4)	119(4)
C(17)-C(16)-C(15)	127(2)	C(26)-C(27)-C(28)	126(4)
C(28)-O(44)-Na(1)	161(4)	N(4)-C(27)-C(28)	115(4)
O(47)-C(22)-O(46)	124(7)	O(44)-C(28)-O(45)	128(5)
O(47)-C(22)-C(23)	118(7)	O(44)-C(28)-C(27)	117(4)
O(46)-C(22)-C(23)	114(6)	O(45)-C(28)-C(27)	115(4)
H(55A)-O(55)-H(55B)	109.5	H(53A)-O(53)-H(53B)	109.5
C(25)-C(26)-C(27)	125(4)	O(49)-Na(2)-O(48)	171(2)
C(25)-C(26)-H(26)	117.7	O(49)-Na(2)-O(45)	83.4(17)
C(27)-C(26)-H(26)	117.7	O(48)-Na(2)-O(45)	89.7(18)
H(58A)-O(58)-H(58B)	109.5	O(49)-Na(2)-N(4)	88.0(16)
C(23)-C(24)-C(25)	114(4)	O(48)-Na(2)-N(4)	93.8(18)
C(23)-C(24)-H(24)	123.2	O(45)-Na(2)-N(4)	64.5(13)
C(25)-C(24)-H(24)	123.1	O(49)-Na(2)-O(46)	94.1(15)
C(28)-O(45)-Na(2)	126(3)	O(48)-Na(2)-O(46)	94.3(18)
H(56A)-O(56)-H(56B)	109.5	O(45)-Na(2)-O(46)	128.0(13)
C(26)-C(25)-C(24)	117(4)	N(4)-Na(2)-O(46)	63.6(11)
C(26)-C(25)-H(25)	121.6	H(57A)-O(57)-H(57B)	109.5
C(24)-C(25)-H(25)	121.5	H(52A)-O(52)-H(52B)	109.5
C(23)-N(4)-C(27)	115(4)		

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+3/2 #2 -x,-y+1,-z+1

Table S3. Details of hydrogen bonds in hybrid 1

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(35)-H(35)O(39)#3	0.82	1.75	2.55(2)	165.4
O(37)-H(37)O(52)#5	0.82	1.84	2.63(4)	162.3
O(39)-H(39)O(58)#6	0.82	1.92	2.63(5)	143.9
O(39)-H(39)O(53)#6	0.82	2.64	3.36(8)	147.0
O(29)-H(29)O(43)#7	0.82	2.26	2.93(4)	139.0
C(12)-H(12)O(19)#4	0.93	2.61	3.46(3)	151.7
C(19)-H(19)O(51)#7	0.93	2.41	3.05(3)	125.7
C(3)-H(3)O(40)#7	0.93	2.66	3.44(3)	141.4
O(55)-H(55A)O(44)#8	0.85	2.46	3.26(6)	159.2
C(26)-H(26)O(41)	0.93	2.60	3.42(4)	146.7
O(58)-H(58A)O(39)#6	0.85	1.89	2.63(5)	144.5

O(56)-H(56B)O(40)#8	0.85	2.82	3.39(4)	126.4
O(54)-H(54A)O(43)	0.85	2.50	3.10(11)	128.3
O(47)-H(47)O(37)#10	0.82	2.65	3.35(5)	145.1
O(53)-H(53B)O(58)	0.85	1.81	2.61(7)	154.7
O(53)-H(53A)O(29)#11	0.85	1.89	2.70(7)	159.6
O(57)-H(57B)O(27)#12	0.85	2.68	3.21(6)	121.4
O(57)-H(57B)O(2)#13	0.85	2.35	3.16(6)	160.6
O(57)-H(57B)O(28)#12	0.85	2.86	3.16(6)	103.3
O(52)-H(52B)O(49)#7	0.85	2.16	2.72(6)	123.0

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+3/2 #2 -x,-y+1,-z+1 #3 -x,y,-z+1/2 #4 -x-1/2,-y+3/2,-z+1 #5 x-1,y,z #6 -x+1,y,-z+1/2 #7 -x+1/2,-y+3/2,-z+1 #8 x+1,y,z #9 -x+2,y,-z+1/2 #10 x-1/2,y-1/2,z #11 x+1/2,-y+3/2,z-1/2 #12 -x+1,-y+1,-z+1

Table S4. Screening of catalyst and solvent system for oxidation of sulfide^a

S. No.	Catalyst	H ₂ O ₂	Solvent	Temp (°C)/Time	Yield	i (%)⊧	Sulfoxide
	(mol%)	(equiv)		(min.)	2	3	Selectivity
1.	0.012	1.2	H ₂ O	85/30	56.0	44.0	56%
2.	0.012	1.2	H ₂ O	85/20	61.0	39.0	61%
3.	0.012	1.2	H ₂ O	85/15	64.0	36.0	64%
4.	0.012	1.2	H ₂ O	85/10	85.0	15.0	85%
5.	0.012	1.2	H ₂ O	85/5	100	ND	100%
6.	0.006	1.2	H ₂ O	85/10	65	ND	100%
7.	0.024	1.2	H ₂ O	85/5	100	ND	100%
8.	0.012	1.2	H ₂ O	r.t/60	ND	ND	-
9.	0.012	1.2	H ₂ O	60/60	70	ND	100%
10.	0.012	-	H ₂ O	85/5	ND	ND	-
11.	-	1.2	H ₂ O	85/5	29.0	ND	100%
12.	0.012	1.2	CH₃CN	85/60	23.0	ND	100%
13.	0.012	1.2	EtOH	85/60	20.0	20.0	50%
14.	0.012	1.2	Isopropanol	85/60	3.0	ND	100%
15.	0.012	1.2	MeOH	85/60	9.0	ND	100%
16.	0.012	1.2	THF	85/60	6.0	ND	100%
17.	Na ₁₂ [P ₂ W ₁₅ O ₅₆] (0.012%)	1.2	H ₂ O	85/5	20.0	34	37%
18.	PDCH ₂ (0.012%)	1.2	H ₂ O	85/5	23.0	ND	100%
19.	Yb(NO₃)₃·5H₂0 (0.012%)	1.2	H ₂ O	85/5	36.0	ND	100%
20.	K ₆ [P ₂ W ₁₈ O ₆₂]	1.2	H ₂ O	85/5	38.8	24.5	61%
21.	Na ₁₂ [P ₂ W ₁₅ O ₅₆] +PDCH ₂ (0.012%)	1.2	H ₂ O	85/5	24.3	16.7	59.6%

^aPerformed with sulfide (1.0 equiv), H₂O₂ (1.2 equiv), hybrid **1** catalyst (0.012 mol%) in water. ^b Isolated yield. ND: Not detected.

Figure S5. Proposed mechanism for the oxidation of sulfides using hybrid 1 with H₂O₂ as oxidant

Recyclability and stability studies on hybrid 1 as catalyst

The recyclability studies on hybrid **1** in the oxidation of 4-(methylthio)phenol was investigated. In a simple process, the 4-(methylsulfinyl)phenol product was extracted by adding dichloromethane after first cycle of the oxidation reaction and the remaining aqueous solutions containing hybrid **1** catalyst was reused directly for the next round of reactions. In this way, hybrid **1** could be reused for at least three times without any significant reduction in catalytic activity (see Table S5). The isolated sulfoxide yields from 1-3 cycles are given in Table S5. After completion of the catalytic cycles, hybrid **1** was isolated by evaporating the aqueous layer under reduced pressure. The stability of recycled hybrid **1** (after three catalytic cycles) were checked by using IR spectroscopy, which was almost similar to that of the fresh hybrid **1** (see Figure S6). This suggested that the structural framework of hybrid **1** is stable even after three catalytic cycles.

Table S5. Recyclability of hybrid 1 catalyst in the oxidation of 4-(methylthio)phenol by H_2O_2

Run	Sulfoxide %
1	100
2	98.42
3	95.18

Figure S6. Comparison of IR spectra of hybrid 1: fresh catalyst (A) and recycled hybrid 1 catalyst after third cycle of catalytic oxidation (B)

References

- 1) A. P. Ginsberg, *Inorganic Synthesis*, John Wiley & Sons, Inc., New york. 1990, 27, 108.
- (a) S. J. Hodson, M. J. Bishop, J. D. Speake, F. Navas, D. T. Garrison, E. C. Bigham, D. L. Saussy, Jr. James A. Liacos, P. E. Irving, M. J. Gobel and B. W. Sherman, *J. Med. Chem.*, 2002, 45, 2229; (b) M. Uchida, K. Otsubo, J. Matsubara, T. Ohtani, S. Morita and K. Ymasaki, *Chem. Pharm. Bull.*, 1995, 43, 693.
- 3) R. Pievo, M. Gullotti, E. Monzani and L. Casella, *Biochemistry*, 2008, 47, 3493.
- V. S. V. Satyanarayana, V. Singh, V. Kalyani, C. P. Pradeep, S. Sharma, S. Ghosh and K. E. Gonsalves, *RSC Adv.*, 2014, 4, 59817.
- 5) X. F. Wu, H. Neumann and M. Beller, *Chem. Eur. J.*, 2012, **18**, 3831.
- 6) CrysAlisPro Program, version 171.37.33c, Agilent Technologies, Oxford, 2012.
- 7) G. M. Sheldrick, ActaCrystallogr., 2008, A64, 112.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- (a) C. B. Cabarrecq, J. D. Ghys, A. Fernandes, J. Jaud and J. C. Trombe, *Inorg. Chim. Acta*, 2008, 361, 2909; (b)
 W.C. Hamilton and J. A. Ibers, *Hydrogen bonding in solids*, W.A. Benjamin, Inc., New York, 1968.
- (a) M. Rafizadeha, V. Amania, E. Iravanib and B. Neumüllerb, *Z. Anorg. Allg. Chem.*, 2005, 631, 952; (b) A. Fernandes, J. Jaud, J. D. Ghys, C. B. Cabarrecq, *Polyhedron*, 2001, 20, 2385; (c) Z. Rzączyńska, A. D. Burdon and J. S. Gromiuk, *J. Therm. Anal. Calorim.*, 2010, 101, 671.
- 11) (a) X. Wang, J. Peng, M.-G. Liu, D.-D. Wang, C.-L. Meng, Y. Lib and Z.-Y. Shia, *CrystEngComm.*, 2012, 14, 3220; (b) X. Wang, Z. Chang, H. Lin, C. Xu, J. Luan, G. Liu and A. Tian, *RSC Adv.*, 2015, 5, 35535.
- 12) E. G. Moore, J. Grilj, E. Vautheyd and P. Ceroni, Dalton Trans., 2013, 42, 2075.
- 13) N. Mamidi, S,Gorai, R, Mukherjee and D. Manna, Mol. BioSyst., 2012, 8, 1275.

¹H and ¹³C NMR spectra for new compounds

Figure S7. ¹H and ¹³C NMR of thiophene-3-ylmethyl 4-(methylthio)benzoate

Figure S8. ¹H and ¹³CNMR of 4-(methylthio)benzyl benzoate

Figure S9. ¹H and ¹³C NMR spectra of (4-((benzyloxy)methyl)phenyl)(methyl)sulfane

Figure S10. 1 H and 13 C NMR of (4-(2-chloroethoxy)phenyl)(methyl)sulfane

Figure S11. ¹H and ¹³C NMR of methyl(4-(pentyloxy)phenyl)sulfane

Figure S12. ¹H and ¹³C NMR of ferrocene-4-(methylthio)aniline

Figure S13. ¹H and ¹³C NMR of 4-(methylsulfinyl)phenol (2)

Figure S14. ¹H and ¹³C NMR of 2-(ethylsulfinyl)aniline (4)

Figure S15. 1 H and 13 C NMR of 2-(propylsulfinyl)aniline (5)

Figure S16. ¹H and ¹³C NMR of 2-(butylsulfinyl)aniline (6)

Figure S17. ¹H and ¹³C NMR of 4-(methylsulfinyl)aniline (7)

Figure S18. ¹H and ¹³C NMR of ferrocene-4-(methylsulfinyl)aniline (8)

Figure S19. 1 H and 13 C NMR of 4-(methylsulfinyl)phenyl methacrylate (9)

Figure S20. 1H and ^{13}C NMR of 4-(methylsulfinyl)phenyl benzoate (10)

Figure S21. ¹H and ¹³CNMR of 1-methyl-4-(methylsulfinyl)benzene (11)

Figure S22. ¹H and ¹³C NMR of 4-(methylsulfinyl)benzaldehyde (12)

Figure S23. ¹H and ¹³C NMR of 1-(2-chloroethoxy)-4-(methylsulfinyl)benzene (13)

Figure S24. ¹H and ¹³C NMR of 1-(methylsulfinyl)-4-(pentyloxy)benzene (14)

Figure S25. ¹H and ¹³C NMR of thiophen-3-ylmethyl 4-(methylsulfinyl)benzoate (15)

Figure S26. ¹H and ¹³C NMR of 1-(methylsulfinyl)-4-nitrobenzene (16)

Figure S27. ¹H and ¹³C NMR of (4-(methylsulfinyl)phenyl)methanol (17)

Figure S28. ¹H and ¹³CNMR of (4-(methylsulfinyl)benzyl benzoate (18)

Figure S29. 1H and ^{13}C of 1-((benzyloxy)methyl)-4-(methylsulfinyl)benzene (19)

HR-MS spectra of new compounds

Figure S30. HR-MS of thiophene-3-ylmethyl 4-(methylyhio)benzoate

Figure S31. HR-MS of 4-(methylthio)benzyl benzoate

Figure S32. HR-MS of (4-((benzyloxy)methyl)phenyl)(methyl)sulfane

Figure S33. HR-MS of ((4-(2-chloroethoxy)phenyl)(methyl)sulfane

Figure S34. HR-MS of methyl(4-(pentyloxy)phenyl)sulfane

Figure S35. HR-MS of ferrocene-4-(methylthio)aniline

Figure S36. HR-MS of 4-(methylsulfinyl)phenol

Figure S37. HR-MS of 2-(ethylsulfinyl)aniline

Figure S38. HR-MS of 2-(propylsulfinyl)aniline

Figure S39. HR-MS of 2-(butylsulfinyl)aniline

Figure S40. HR-MS of 4-(methylsulfinyl)aniline

Figure S41. HR-MS of ferrocene-4-(methylsulfinyl)aniline

Figure S42. HR-MS of 4-(methylsulfinyl)phenyl methacrylate

Figure S43. HR-MS of 4-(methylsulfinyl)phenyl benzoate

Figure S44. HR-MS of 1-methyl-4-(methylsulfinyl)benzene

Figure S45. HR-MS of 4-(methylsulfinyl)benzaldehyde

Figure S46. HR-MS of 1-(2-chloroethoxy)-4-(methylsulfinyl)benzene

Figure S47. HR-MS of 1-(methylsulfinyl)-4-(pentyloxy)benzene

 $Figure \ S48. \ HR-MS \ of \ thiophen-3-ylmethyl \ 4-(methyl sulfinyl) benzoate$

Figure S49. HR-MS of 1-(methylsulfinyl)-4-nitrobenzene

Figure S50. HR-MS of (4-(methysulfinyl)phenyl)methanol

Figure S51. HR-MS of (4-(methysulfinyl)benzyl benzoate

Figure S52. HR-MS of 1-((benzyloxy)methyl)-4-(methylsulfinyl)benzene