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Scheme 1. Synthetic scheme of hybrid 1. Colour code: WOg - dark blue polyhedra, PO, - pink polyhedra, Na - cyan, Yb - pale green, C -
grey, O - red and N - blue.
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Materials and methods

Na12[P2W150s9]-14H20,! 2-(ethylthio)aniline,? 2-(propylthio)aniline,? 2-(butylthio)aniline,? (4-(methylthio)phenyl)methanol,
4-(methylthio)phenyl methacrylate* and 4-(methylthio)phenyl benzoate® were prepared according to the reported procedures.
Pyridine 2,6-dicarboxylic acid, ytterbium (iii) nitrate pentahydrate, 4-(methylthio)phenol, 4-(methylthio)aniline, ferrocene
carboxaldehyde, 4-(methylthio)benzoic acid, 4-(methylthio)benzaldehyde, methyl(4-nitrophenyl)sulfane and methyl(p-
tolyl)sulfane were purchased from Sigma Aldrich. FT-IR spectra were recorded on a Perkin Elmer Spectrum 2
spectrophotometer using KBr pellets. *H and *C NMR spectra were recorded on Jeol INM ECX 500 MHz spectrometer in
CDCls. TGA measurements were performed on NETZSCH STA 449 F1 JUPITER Series instrument. The heating rate
employed was 10 °C/min under N2 atmosphere over a temperature range of 25-1000 °C. HR-MS spectra of compounds were
recorded on Bruker HD compact instrument. UV-Vis studies were carried out on SHIMADZU UV-2450 spectrophotometer
using quartz cuvettes. Energy-dispersive X-ray spectroscopy (EDX) analyses of hybrid 1 were conducted on FEI-Nova nano
SEM-450.

X-ray crystallography

Single crystal X-ray data were collected on Agilent Super Nova diffractometer, equipped with multilayer optics
monochromatic dual source (Cu and Mo) and Eos CCD detector, using Mo-Ka (0.71073 A) radiation at temperature 150 K.
Data acquisition, data reduction and analytical face-index based absorption correction were performed using the program
CrysAlisPRO.% The structure was solved by Direct methods with ShelXS” program and refined on F? by full matrix least-
squares techniques with ShelXL’ program in Olex? (v.1.2) program package.® Anisotropic displacement parameters were
applied for all the atoms, except for hydrogen atoms and some less intensely scattered atoms. The crystal and refinement
data are summarized in Table 1. CCDC 1444174 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data  Centre via

www.ccdc.cam.ac.uk/data_request/cifdata.

Experimental section
1. Synthesis and characterization of hybrid 1

Pyridine-2,6-dicarboxylic acid (0.02321 g, 0.13904 mmol) and Yb(NOs)3-5H.0 (0.0534 g, 0.13904 mmol) were stirred
together in 20 ml of distilled water for 24 hrs at room temperature. To the resultant turbid solution was added
Nai2[P2W150s6] (0.300 gm, 0.06952 mmol) and stirred again for 24 hrs. The clear solution thus obtained was kept for
crystallization by slow evaporation. After 7 days, block color-less crystals were collected and dried overnight in desiccator.
Yield: 0.170 gm (75 %) based on Nai2[P2W150ss] used. FT-IR: v max/cm™ 3565, 1615, 1435, 1386, 1283, 1195, 1080, 1055,
1024, 939, 903, 824, 694 cm™*.

(a) Infrared spectroscopy

The infrared spectrum of hybrid 1 agrees well with the proposed structure (see Figure S1). The broad bands at 3140 cm™ are
ascribed to the presence of hydrogen bonded O-H functional groups of PDCH: and lattice water molecules.® The appearance
of vibrational peaks at 1613, 1575 and 1386 cm! are due to the anti-symmetric and symmetric vibrations of carbonyl groups
respectively. The peaks at 1435 and 1283 cm! are due to the stretching vibrations of C=C and C-O groups.'® The bands at
1086 (P-0) and 950 (W=0), 907 and 700 (W-O-W) cm* are due to the presence of [P2W18062]° POM units in hybrid 1.1
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Figure S1. Infrared spectrum of hybrid 1

(b) UV-visible spectroscopy

The electronic properties of hybrid 1 were studied by UV-visible measurements on 10-5 M aqueous solutions (see Figure S2).

The maximum absorption of hybrid 1, Amax = 269, 277 nm, are due to the presence of (Yb(PDCH2)2(PDCH))?* complex in
the hybrid 1.12
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Figure S2. UV-Visible spectra of hybrid 1 at 10° M aqueous solution

(c) TGA analysis

To investigate the thermal stability of hybrid 1, thermo gravimetric analysis was carried out and results are shown in Figure
S3. The hybrid 1 shows two major weight losses in the temperature range between 25 °C to 650 ‘C. The first weight loss of
6.08 % (calcd. 6.12 %) was observed at 25-200 °C due to the loss of lattice water molecules and water molecules coordinated
to the Nal and Na2 atoms. The second weight loss of 20.34 % (calcd. 20.47 %) occurred between 200-650 °C due to the loss

of four PDCH2 based ligands present in the cationic unit. The TGA data is therefore in good agreement with other
spectroscopic data and XRD analysis.
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Figure S3. TGA profile of hybrid 1

(d) EDX analysis

EDX analyses of hybrid 1 were carried out to confirm the presence of Yb, Na etc elements. EDX analyses revealed that the
hybrid 1 consists of following elements: W, O, Yb, P, C, Na and N elements (see Figure S4) as expected in agreement with

other characterization data.
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Figure S4. EDX data of hybrid 1
2. General procedure for the esterification (1)

Carboxylic acid (1.0 equiv), dicyclohexylcarbodiimide (1.5 equiv) and N,N-dimethylaminopyridine (0.1 equiv) were added
to a solution of alcohol (1.0 equiv) in anhydrous dichloromethane under N2 atmosphere. Stirring was continued for 16 h at
room temperature. Upon completion of reaction (monitored by TLC), the reaction mixture was filtered and washed with
dichloromethane (5 mL X 3). The crude reaction mixture was concentrated under reduced pressure and the residue was
purified using column chromatography on silica gel with EtOAc/hexane (1-3%) as an eluent to afford corresponding esters.

The average yields were 76 to 78%.



(a) Thiophene-3-ylmethyl 4-(methylthio)benzoate

S
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Using the general procedure (1) and starting from 4-(methylthio)benzoic acid (500 mg, 2.98 mmol), thiophene-3-ylmethyl 4-
(methylthio)benzoate (595 mg, 2.25 mmol, 76%) was isolated as a yellow oil. *tH NMR (500 MHz, CDCl3) §ppm7.95 (d, J =
8.9 Hz, 2H), 7.36 (s, 1H), 7.33 (d, J = 8.25 Hz ,1H), 7.28 (d, J = 8.95 Hz, 2H), 7.16 (d, J = 4.1 Hz, 1H), 5.34 (s, 2H), 2.50 (s,
3H); ¥C NMR (125 MHz, CDCls) §ppm166.16, 145.60, 136.89, 129.94, 127.57, 126.22, 126.10, 124.84, 124.22, 61.71,
14.77; ESI-MS: m/z [M+H] calcd. for C13H1202S,: 264.36; found: 265.18.

(b) 4-(Methylthio)benzyl benzoate

Using the general procedure (I) and starting from (4-(methylthio)phenyl)methanol (500 mg, 3.25 mmol), 4-
(methylthio)benzyl benzoate (600 mg, 2.52 mmol, 78%) was isolated as a yellow oil. *H NMR (500 MHz, CDCI3) §ppm 8.06
(d, 3 =8.95 Hz, 2H), 7.55 (t, J = 7.55 Hz, 1H), 7.43 (t, J = 7.9 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H),
5.31 (s, 2H), 2.48 (s, 3H); *C NMR (125 MHz, CDCl3) &ppm 166.40, 138.75, 133.02, 132.69, 130.03, 129.64, 128.88,
128.34, 126.49, 66.32, 15.69; ESI-MS: m/z [M+Na] calcd. for C15sH140S: 258.335; found: 281.05.

3. General procedure for the etherification (1)1

Sodium hydride (60% in mineral oil, 2.0 equiv) was taken into a flame-dried round-bottom flask under N2 atmosphere and
washed thrice with anhydrous hexane to remove mineral oil. Alcohol (1.0 equiv) in anhydrous THF (5 mL) was added drop
wise to a stirred suspension of NaH in anhydrous THF (15 mL) at 0 °C and stirred for 1 h. Then aryl bromide or chloro
bromo ethane or 1-bromohexane (1.1 equiv) was added drop wise to the reaction mixture and stirred overnight at room
temperature. The reaction was quenched by a saturated solution of ammonium chloride and extracted with diethyl ether (3 x
10 ml). The combined organic phases were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography on silica gel with EtOAc/hexane (1-2%) as the eluent to afford

corresponding ethers. The average yields were 75 - 85%.



(a) (4-((Benzyloxy)methyl)phenyl)(methyl)sulfane

o

Using the general procedure (ll) and starting from (4-(methylthio)phenyl)methanol (500 mg, 3.25 mmol) (4-
((benzyloxy)methyl)phenyl)(methyl)sulfane (620 mg, 2.54 mmol, 78%) was isolated as a yellow oil. 'H NMR (500 MHz,
CDCls) 8ppm7.35 (d, J = 4.5 Hz, 4H),7.29 (d, J = 8.6 Hz, 2H),7.24 (t, J = 4.1 Hz, 3H), 4.53 (s, 2H), 4.51 (s, 2H), 2.24 (s,
3H);13C NMR (125 MHz, CDCls) §ppm138.14, 137.70, 135.09, 128.39, 127.77, 127.63, 126.62, 71.97, 71.62, 15.92; ESI-MS:
m/z [M+2H] calcd. for C1sH160S: 244.352; found:246.23.

(b) (4-(2-Chloroethoxy)phenyl)(methyl)sulfane

Using the general procedure (II) and starting from 4-(methylthio)phenol (500 mg, 3.57 mmol), (4-(2-
chloroethoxy)phenyl)(methyl)sulfane (600 mg, 2.97 mmol, 83%) was isolated as a white solid. *H NMR (500 MHz, CDCls)
dppm7.26 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 4.20 (t, J = 5.85 Hz, 2H), 3.80 (t, J = 6.0 Hz, 2H), 2.44 (s, 3H); *3C
NMR (125 MHz, CDCl3) dppm156.61, 129.85, 129.75, 115.41, 68.15, 41.83, 17.74; ESI-MS: m/z[M]calcd. for CsH11CIOS:
202.701; found: 202.03.

(c) Methyl (4-(pentyloxy)phenyl)sulfane

Using the general procedure (II) and starting from 4-(methylthio)phenol (500 mg, 3.57 mmol), methyl(4-
(pentyloxy)phenyl)sulfane (600 mg, 2.86 mmol, 80%) was isolated as a yellow oil. *H NMR (500 MHz, CDCl3) &ppm 7.25
(d, J=8.9 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 3.92 (t, J = 6.5 Hz, 2H),2.43 (s, 3H),1.78-1.75 (m, 2H), 1.43-1.36 (m, 4H), 0.92
(t, J =7.2, 3H);°C NMR (125 MHz, CDCl3) 3ppm157.72, 130.18, 128.38, 115.14, 68.09, 28.90, 28.15, 22.43, 18.10, 14.00;
ESI-MS: m/z[M] calcd. for C12HsOS: 210.33; found: 210.14.



4. Procedure for the synthesis of ferrocene-4-(methylthio)aniline
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Scheme 2. Synthetic route of ferrocene-4-(methylthio)aniline

Ferrocene carboxaldehyde (1 gm, 4.67 mmol, 1.0 equiv) and 4-(methylthio)aniline (0.650 gm, 4.67 mmo, 1.0 equiv) were
dissolved in 50 ml of benzene in a 100 mL round bottom flask and refluxed the reaction mixture at 100 °C for 24 hrs using
dean stark apparatus. After completion of the reaction (monitored by TLC), evacuated the benzene under reduced pressure
(use fume hood for all these steps). After that, 40 mL of methanol was added into the same round bottom flask and dissolved
the reaction mixture while stirring at room temperature. The reaction temperature was maintained at 0°C using an ice bath
and sodium borohydride (0.621 gm, 16.35 mmol, 3.5 equiv) was added portion wise in 15 min duration and finally stirred for
2 hours. After completion of the reaction (monitored by TLC), reaction mixture was cautiously quenched by addition of 3
mL of water and extracted with dichloromethane (3x10 mL). The combined organic phases were dried with anhydrous
Na2SO4and concentrated under reduced pressure. The residue was purified using column chromatography on silica gel with
EtOAc/hexane (1:4) as the eluent to afford ferrocene-4-(methylthio)aniline (C1sHisFeNS) as a yellow solid (0.947 gm, 60%).
IH NMR (500 MHz, CDCls) §ppm7.16 (d, J = 8.2 Hz, 2H), 6.52 (d, J = 8.2 Hz, 2H), 4.15 (s, 2H), 4.09 (s, 4H), 4.06 (s, 2H),
3.8 (s, 2H), 2.33 (s, 3H);13C NMR (125 MHz, CDCls) 8ppm146.99, 131.46, 124.17, 113.17, 86.03, 68.42, 68.03, 67.87, 43.28,
19.15; ESI-MS: m/z[M] calcd. for C1sH19 FeNS: 337.26; found:337.07.

5. General procedure for the oxidation of sulfides using hybrid 1 (I11)

To a 10 mL Ace pressure tube were added sulfide (1.0 equiv), H202 (1.2 equiv), catalytic amount of hybrid 1 (0.012 mol%)
and dissolved in 3 mL of recommended solvent (see main manuscript Table 1). Then the reaction mixture was stirred on a
pre-heated hot plate at 85 °‘C for the mentioned time. After completion of the reaction (monitored by TLC), the reaction
mixture was extracted with dichloromethane (3x5 mL). The combined organic phases were dried with anhydrous Na2SO4
and concentrated under reduced pressure. The residue was purified using column chromatography on silica gel with
DCM/MeOH as an eluent to afford desired sulfoxides.



(a) 4-(Methylsulfinyl)phenol (2)
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Using the general procedure (I11) and starting from 4-(methylthio)phenol (25 mg, 0.178 mmol), 4-(methylsulfinyl)phenol (28
mg, 0.179 mmol, 100 %) was isolated as a white solid; *H NMR (500 MHz, CDCls) §ppm 7.52 (d, J = 8.9 Hz, 2H), 6.96 (d, J
= 8.9 Hz, 2H), 3.63 (s, 1H), 2.74 (s, 3H); 13C NMR (125 MHz, CDCl3) Sppm 159.5, 148.0, 126.0, 116.6, 43.4; ESI-MS: m/z
[M+H] calcd. for C7HsO2S: 156.20; found: 157.03.

(b) 2-(Ethylsulfinyl)aniline (4)

NH,
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Using the general procedure (I11) and starting from 2-(ethylthio)aniline (25 mg, 0.163 mmol), 2-(ethylsulfinyl)aniline (22.6
mg, 0.134 mmol, 85%) was isolated as a yellow oil; *H NMR (500 MHz, CDCl3) §ppm7.23 (d, J = 9.0 Hz, 1H), 7.20 (t, J =
7.2 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 5.06 (brs, 2H), 3.24-3.21 (m, 1H), 3.14-3.12 (m, 1H), 1.21 (t,
J =7.2 Hz, 3H); **C NMR (125 MHz, CDCls) dppm 147.7, 132.3, 127.3, 121.4, 117.3, 117.2, 45.0, 7.6;ESI-MS: m/z [M+H]
calcd. for CsH11NOS: 169.24; found: 170.04.

(c) 2-(Propylsulfinyl)aniline (5)
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Using the general procedure (111) and starting from 2-(propylthio)aniline (25 mg, 0.150 mmol), 2-(propylsulfinyl)aniline (20
mg, 0.109 mmol, 73%) was isolated as a yellow oil; *H NMR (500 MHz, CDCl3) §ppm7.24 (d, J = 8.9 Hz, 1H), 7.20 (t, J =
6.5 Hz, 1H), 6.73 (t, J = 7.6 Hz, 1H), 6.00 (d, J = 7.9 Hz, 1H), 5.07 (brs, 2H), 3.31-3.25 (m, 1H), 3.03-2.97 (m, 1H), 1.74-
1.62 (m, 2H), 1.06 (t, J = 7.5 Hz, 3H); 3C NMR (125 MHz, CDCls) 8ppm 147.7, 132.3, 127.1, 121.9, 117.4, 117.3, 53.2,
16.8, 13.1;ESI-MS: m/z [M+H] calcd. for CoH13NOS: 183.271; found: 184.06.

(d) 2-(Butylsulfinyl)aniline (6)

NH,
o 6




Using the general procedure (111) and starting from 2-(butylthio)aniline (25 mg, 0.138 mmol), 2-(butylsulfinyl)aniline (12.1
mg, 0.0614 mmol, 45%) was isolated as a yellow oil; *H NMR (500 MHz, CDCls) 8ppm 7.24 (d, J = 8.9 Hz, 1H), 7.20 (t, J =
6.5 Hz, 1H), 6.74 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 5.06 (brs, 2H), 3.32-3.26 (m, 1H), 3.06-3.00 (m, 1H), 1.68-
1.66 (m, 1H), 1.63-1.56 (m, 1H), 1.49-1.42 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); 3C NMR (125 MHz, CDCl3) dppm 147.7,
132.3, 127.3, 121.4, 117.3, 117.2, 51.10, 25.19, 21.78,13.62; ESI-MS: m/z [M+H] calcd. for C10H1sNOS: 197.297; found:
198.09.

(e) 4-(Methylsulfinyl)aniline (7)

/
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Using the general procedure (111) and starting from 4-(methylthio)aniline (25 mg, 0.180 mmol), 4-(methylsulfinyl)aniline
(26.3 mg , 0.169 mmol, 94%) was isolated as a yellow oil; *H NMR (500 MHz, CDCl3) §ppm 7.45 (d, J = 9.5 Hz, 2H), 6.75
(d, J = 8.3 Hz, 2H), 4.06 (brs, 2H), 2.69 (s, 3H); 3C NMR (125 MHz, CDCls) Sppm 149.6, 133.02, 125.6, 115.0, 43.7; ESI-
MS:m/z [M+H] calcd. for C7HsNOS: 155.217; found: 156.06.

(f) Ferrocene-4-(methylsulfinyl)aniline (8)

Using the general procedure (111) and starting from ferrocene-4-(methylthio)aniline (CisHi9FeNS) (50 mg, 0.148 mmol),
ferrocene-4-(methylsulfinyl)aniline (C1sH1oFeNOS) (19 mg, 0.053 mmol, 36%) was isolated as a yellow solid; 'H NMR
(500 MHz, CDCl3) 8ppm7.50 (d, J = 8.9 Hz, 2H), 6.71 (d, J = 9.0 Hz, 2H), 4.24 (s, 2H), 4.19 (s, 4H), 4.17 (s, 2H), 4.0 (s, 2H),
2.70 (s, 3H); 3C NMR (125 MHz, CDCls) §ppm 150.6, 131.6, 125.8, 115.0, 112.6, 85.3, 68.5, 68.2, 68.1, 43.6, 42.9; ESI-MS:
m/z [M+H] calcd. for C1sH19FeNOS: 353.260; found: 353.05.

(9) 4-(Methylsulfinyl)phenyl methacrylate (9)

Using the general procedure (IIl) and starting from 4-(methylthio)phenyl methacrylate (25 mg, 0.120 mmol), 4-
(methylsulfinyl)phenyl methacrylate (24.4 gm, 0.109 mmol, 91%) was isolated as a white solid;*H NMR (500 MHz, CDCls)
Sppm 7.67 (d, 3 = 9.0 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 6.36 (s, 1H), 5.79 (s, 1H), 2.72 (s, 3H), 2.05 (s, 3H); 1*C NMR (125
MHz, CDCls) Sppm 165.4, 153.0, 142.7, 135.4, 128.0, 125.0, 122.8, 44.1, 18.3; ESI-MS: m/z [M+H] calcd. for C11H1203S:
224.276; found:225.06.



(h) 4-(Methylsulfinyl)phenyl benzoate (10)
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Using the general procedure (IlI) and starting from 4-(methylthio)phenyl benzoate (50 mg, 0.205 mmol), 4-
(methylsulfinyl)phenyl benzoate (44.1 mg, 0.170 mmol, 83%) was isolated as a white solid; *H NMR (500 MHz, CDCls)
Sppm 8.22 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.9 Hz, 2H), 7.42 (d, J = 8.6 Hz,
2H), 2.77 (s, 3H); 3C NMR (125 MHz, CDCls) §ppm 164.8, 153.0, 142.9, 134, 130.3, 128.9, 128.7, 125.0, 122.9, 44.1; ESI-
MS: m/z [M+H] calcd. for C14H1203S: 260.308; found: 261.04.

(i) 1-Methyl-4-(methylsulfinyl)benzene (11)

/
H;C S,
10

Using the general procedure (lII) and starting from methyl(p-tolyl)sulfane (50 mg, 0.362 mmol), 1-methyl-4-
(methylsulfinyl)benzene (56 mg, 0.362 mmol, 100%) was isolated as a colorless liquid;*H NMR (500 MHz, CDCls) 8ppm7.54
(d, J = 8.25 Hz, 2H), 7.33 (d, J = 8.25 Hz, 2H), 2.70 (s, 3H), 2.41 (s,3H); 3C NMR (125 MHz, CDCls) ppm142.26, 141.35,
129.43, 123.37, 43.81, 21.23; ESI-MS: m/z [M+H] calcd. for CsHsOsS: 154.22; found: 155.04.

(i) 4-(Methylsulfinyl)benzaldehyde (12)

CHO

Using the general procedure (III) and starting from 4-(methylthio)benzaldehyde (50 mg, 0.329 mmol) 4-
(methylsulfinyl)benzaldehyde (31.3 mg, 0.186 mmol, 57 %) was isolated as a yellow colored oil; *H NMR (500 MHz,
CDCls) 8ppm 10.1 (S, 1H), 8.06 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 2.80 (s, 3H); 13C NMR (125 MHz, CDCls) Sppm
191.1, 152.3, 138.0, 130.3, 124.1, 43.7; ESI-MS: m/z [M+H] calcd. for CgHgO2S: 168.213; found: 169.09.

10



(k) 1-(2-Chloroethoxy)-4-(methylsulfinyl)benzene (13)

o~C

Using the general procedure (I11) and starting from (4-(2-chloroethoxy)phenyl)(methyl)sulfane (50 mg, 0.248 mmol), 1-(2-
chloroethoxy)-4-(methylsulfinyl)benzene (32.4 gm , 0.149 mmol, 60%) was isolated as a yellow liquid; "H NMR (500
MHz, CDCl3) 8ppm 7.61 (d, J = 8.9 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 4.28 (t, J = 5.5 Hz, 2H), 3.85 (t, J = 5.8 Hz, 2H), 2.71
(s, 3H); 13C NMR (125 MHz, CDCls) 8pom 160.5, 137.2, 125.5, 115.4, 68.1, 43.9, 41.6; ESI-MS: m/z [M+H] calcd. for
CoH11ClO2S: 218.70; found: 219.01.

(I) 1-(Methylsulfinyl)-4-(pentyloxy)benzene (14)

Using the general procedure (II1) and starting from methyl(4-(pentyloxy)phenyl)sulfane (25 mg, 0.119 mmol), 1-
(methylsulfinyl)-4-(pentyloxy)benzene (24.5 mg, 0.108 mmol, 91%) was isolated as a yellow liquid; *H NMR (500 MHz,
CDCl3) 8ppm7.58 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 4.00 (t, J = 6.53 Hz, 2H), 2.70 (s, 3H), 1.83-1.78 (m, 2H),
1.46-1.38 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H); 3C NMR (125 MHz, CDCls) §ppm 161.5, 136.0, 125.3, 115.2, 68.2, 43.8, 28.7,
28.0, 22.3, 13.9; ESI-MS: m/z [M+H] calcd. for C12H1802S: 226.335; found: 227.11.

(m) Thiophen-2-ylmethyl-4-(methylsulfinyl)benzoate (15)

Using the general procedure (l1l) and starting from thiophen-2-ylmethyl 4-(methylthio)benzoate (50 mg, 0.189 mmol),
thiophen-2-ylmethyl 4-(methylsulfinyl)benzoate (40 mg, 0.142 mmol, 75%) was isolated as a yellow liquid; *H NMR (500
MHz, CDCl3) 8ppm 8.21 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 9.0 Hz, 2H), 7.40 (s, 1H), 7.35 (d, J = 7.3 Hz, 1H), 7.18 (d, J = 5.5
Hz, 1H), 5.40 (s, 2H), 2.75 (s, 3H); $3C NMR (125 MHz, CDCl3) Sppm 165.2, 150.8, 136.3, 132.5, 130.5, 127.6, 126.4, 124.7,
123.4, 62.1, 43.7; ESI-MS: m/z [M+H] calcd. for C13H1203S2: 280.363; found: 281.02.
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(n) 1-(Methylsulfinyl)-4-nitrobenzene (16)

Using the general procedure (111) and starting from methyl(4-nitrophenyl)sulfane (50 mg, 0.296 mmol), 1-(methylsulfinyl)-
4-nitrobenzene (39.5 mg, 0.214 mmol, 72%) was isolated as a light yellow solid; *H NMR (500 MHz, CDClz) &ppm 8.40 (d,
J =8.95 Hz, 2H), 7.84 (d, J = 8.25 Hz, 2H), 2.80 (s, 3H);3C NMR (125 MHz, CDCla) Sppm; 153.19, 149.47, 124.63, 124.47,
43.84; ESI-MS: m/z [M+H] calcd. for C1sH2203S: 185.20; found: 186.01.

(0) (4-(Methylsulfinyl)phenyl)methanol (17)
OH

Using the general procedure (I11) and starting from (4-(methylthio)phenyl)methanol (50 mg, 0.325 mmol) (4-
(methylsulfinyl)phenyl)methanol (55.3 mg, 0.325 mmol, 100%) was isolated as a colorless oil; *H NMR (500 MHz, CDCls)
Sppm7.55 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 4.70 (s, 2H), 2.70 (s, 3H); 3C NMR (125 MHz, CDCls) 8ppm 145.0,
143.7, 127.5, 123.6, 64.1, 43.6;ESI-MS: m/z [M+H] calcd. for CgH100.S: 170.229; found: 171.05.

(p) (4-(Methylsulfinyl)benzyl benzoate (18)

Using the general procedure (I1I) and starting from 4-(methylthio)benzyl benzoate (50 mg, 0.194 mmol), 4-
(methylsulfinyl)benzyl benzoate (46 mg, 0.167 mmol, 86%) was isolated as a yellow oil; *H NMR (500 MHz, CDCls)
Sppm8.08 (d, J = 7.55 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.62-7.56 (m, 3H), 7.45 (t, J = 7.9 Hz, 2H), 5.42 (s, 2H), 2.74 (s,
3H); 3C NMR (125 MHz, CDCl3) dppm 166.2, 145.4, 139.3, 133.2, 129.6, 128.8, 128.4, 123.8, 65.7, 43.9; ESI-MS: m/z
[M+H] calcd. for C1sH1403S: 274.335; found: 275.06.
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(q) 1-((Benzyloxy)methyl-4-(methysulfinyl)benzene (19)

o L

Using the general procedure (111) and starting from (4-((benzyloxy)methyl)phenyl)(methyl)sulfane (50 mg, 0.205 mmol), 1-
((benzyloxy)methyl)-4-(methylsulfinyl)benzene (42 mg, 0.162 mmol, 79%) was isolated as a yellow oil;*H NMR (500 MHz,
CDCl3) 8ppm 7.64 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 4.8 Hz, 4H), 7.34-7.31 (m, 1H), 4.60, (s, 2H),
4.59 (s, 2H), 2.72 (s, 3H); 13C NMR (125 MHz, CDCls) dppm 144.7, 141.7, 137.7, 128.4, 128.3, 127.8, 127.7, 123.6, 72.5,

71.2,43.9; ESI-MS: m/z [M+H] calcd. for C1sH1602S: 260.351; found: 261.09.

Table S1. Crystal and structure refinement data for hybrid 1

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume
z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Refinement method
Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [1>2sigma(l)]
R indices (all data)
Extinction coefficient

Largest diff. peak and hole  7.785 and -4.047 e.A3

C28 Hao N4 Na2 Osg P Wo Yb
3265.28

150(2) K

0.71073 A

Monoclinic

C2lc

a=18.2405(16) A

b =35.036(2) A

€ =122.8447(14) A

B=101.071(8)°.

14327.7(18) A3
8

3.027 Mg/m3

15.827 mm-1
11784

0.4668 x 0.0692 X 0.0437 mm3

1.817 to 28.401°.

-24<=h<=24, -44<=k<=17, -10<=1<=29
23691

15635 [R(int) = 0.0566]

98.9 %

None

Full-matrix least-squares on F2
15635/0/864

1.048

R1 = 0.0849, wR2 = 0.2288
R1=0.1233, wR2 = 0.2872
n/a



Table S2. Bond lengths [A] and angles [°] for hybrid 1

W(6)-O(15)
W(6)-0(20)
W(6)-O(14)
W(6)-O(16)
W(6)-0(9)
W(6)-O(17)
W(5)-0(12)
W(5)-O(10)
W(5)-0(14)
W(5)-0(13)
W(5)-0(19)
W(5)-0(11)
W(4)-O(50)#1
W(4)-O(13)#1
W(4)-0(22)#1
W(4)-0(19)
W(4)-0(8)
W(4)-0(11)
W(8)-0(23)
W(8)-0(25)
W(8)-0(28)
W(8)-0(22)
W(8)-0(20)
W(8)-0(24)
W(7)-O(41)#2
W(7)-O(16)
W(7)-0(6)
W(7)-O(18)
W(7)-0(21)
W(7)-0(17)
W(1)-0(5)
W(1)-0(9)
W(1)-O(10)
W(1)-0(4)
W(1)-0(3)
W(1)-0(7)
W(9)-0(26)
W(9)-0(21)
W(9)-O(18)#1
W(9)-0(25)
W(9)-0(27)
W(9)-0(24)
W(2)-0(51)#1
W(2)-0(8)
W(2)-0(3)
W(2)-0(28)#1
W(2)-0(2)
W(2)-0(7)

1.688(18)
1.832(18)
1.871(15)
1.940(16)
2.033(15)
2.355(14)
1.692(14)
1.894(15)
1.906(15)
1.912(15)
1.924(14)
2.372(14)
1.716(15)
1.856(15)
1.874(15)
1.912(13)
1.957(16)
2.351(14)
1.690(16)
1.889(16)
1.892(18)
1.894(16)
1.933(18)
2.373(13)
1.706(15)
1.860(15)
1.893(16)
1.920(14)
1.931(17)
2.375(14)
1.690(16)
1.785(15)
1.891(14)
1.916(16)
1.956(17)
2.388(14)
1.709(16)
1.839(17)
1.876(14)
1.917(15)
1.941(19)
2.340(14)
1.683(16)
1.845(16)
1.875(15)
1.937(18)
1.958(17)
2.367(17)

W(3)-0(1)
W(3)-0(27)#1
W(3)-0(6)
W(3)-0(2)
W(3)-0(4)
W(3)-0(7)
Yb(1)-0(30)
Yb(1)-0(40)
Yb(1)-0(32)
Yb(1)-0(34)
Yb(1)-0(38)
Yb(1)-N(1)
Yb(1)-N(2)
Yb(1)-0(36)
Yb(1)-N(3)
Yb(1)-C(1)
Yb(1)-C(7)
P(1)-0(17)
P(1)-0(11)
P(1)-0(24)#1
P(1)-0(7)
0(15)-Na(1)
0(36)-C(14)
0(40)-C(21)
0(35)-C(14)
0(35)-H(35)
0(31)-C(7)
0(31)-Na(1)
0(27)-W(3)#1
O(41)-W(7)#2
0(41)-Na(1)
0(22)-W(4)#1
0(28)-W(2)#1
O(13)-W(4)#1
N(3)-C(16)
N(3)-C(20)
O(18)-W(9)#1
Na(1)-0(42)
Na(1)-0(43)
Na(1)-O(44)
0(33)-C(8)
0(33)-H(33)
0(37)-C(15)
0(37)-H(37)
N(2)-C(13)
N(2)-C(9)
0(32)-C(7)
0(34)-C(8)

1.693(16)
1.877(19)
1.901(17)
1.914(17)
1.951(16)
2.369(16)
2.30(2)
2.310(16)
2.330(17)
2.356(17)
2.363(17)
2.427(19)
2.428(18)
2.435(17)
2.44(2)
3.19(3)
3.21(3)
1.512(15)
1.520(15)
1.529(13)
1.576(18)
2.34(2)
1.18(3)
1.29(3)
1.28(3)
0.8200
1.24(3)
2.29(3)
1.877(19)
1.706(15)
2.38(2)
1.874(15)
1.937(18)
1.855(14)
1.34(3)
1.36(3)
1.876(14)
2.27(4)
2.40(5)
2.61(5)
1.26(3)
0.8200
1.29(3)
0.8200
1.33(4)
1.34(3)
1.26(3)
1.27(3)
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0(38)-C(15)
0(39)-C(21)
0(39)-H(39)
N(1)-C(6)
N(1)-C(2)
0(30)-C(1)
C(9)-C(10)
C(9)-C(8)
0(29)-C(1)
0(29)-H(29)
C(12)-C(11)
C(12)-C(13)
C(12)-H(12)
C(10)-C(11)
C(10)-H(10)
C(13)-C(14)
C(18)-C(19)
C(18)-C(17)
C(18)-H(18)
C(6)-C(5)
C(6)-C(7)
C(2-C@3)
C(2)-C(1)
C(5)-C4)
C(5)-H(5)
C(11)-H(11)
C(#)-CR)
C(4)-H(4)
C(19)-C(20)
C(19)-H(19)
0(24)-P(1)#1
C(21)-C(20)
C(15)-C(16)
C(3)-H(3)
C(17)-C(16)
C(17)-H(17)
0(44)-C(28)
0(50)-W(4)#1
0(51)-W(2)#1
C(22)-0(47)
C(22)-0(46)
C(22)-C(23)
0(55)-H(55A)
0(55)-H(55B)
C(26)-C(25)
C(26)-C(27)
C(26)-H(26)
0(58)-H(58A)
0(58)-H(58B)
C(24)-C(23)

1.28(3)
1.25(3)
0.8200
1.30(3)
1.34(3)
1.27(4)
1.38(4)
1.49(4)
1.28(4)
0.8200
1.40(4)
1.43(4)
0.9300
1.35(4)
0.9300
1.45(4)
1.35(4)
1.39(4)
0.9300
1.39(4)
1.46(4)
1.35(4)
1.49(4)
1.35(5)
0.9300
0.9300
1.38(4)
0.9300
1.41(3)
0.9300
1.529(13)
1.46(3)
1.44(4)
0.9300
1.37(4)
0.9300
1.30(6)
1.716(15)
1.683(16)
1.24(8)
1.40(8)
1.55(8)
0.8497
0.8503
1.28(5)
1.37(5)
0.9300
0.8500
0.8499
1.33(5)

C(24)-C(25)
C(24)-H(24)
0(45)-C(28)
0(45)-Na(2)
0(56)-H(56A)
0(56)-H(56B)
C(25)-H(25)
N(4)-C(23)
N(4)-C(27)
N(4)-Na(2)
0(54)-H(54A)
0(54)-H(54B)
O(47)-H(47)
0(46)-Na(2)
C(27)-C(28)
0(53)-H(53A)
0(53)-H(53B)
Na(2)-0(49)
Na(2)-0(48)
0(57)-H(57A)
0(57)-H(57B)
0(52)-H(52A)
0(52)-H(52B)

0(15)-W(6)-0(20)
O(15)-W(6)-O(14)
0(20)-W(6)-O(14)
0(15)-W(6)-O(16)
0(20)-W(6)-O(16)
0(14)-W(6)-O(16)
0(15)-W(6)-0(9)

0(20)-W(6)-0(9)

0(14)-W(6)-0(9)

0(16)-W(6)-0(9)

0O(15)-W(6)-0(17)
0(20)-W(6)-0(17)
0(14)-W(6)-O(17)
0(16)-W(6)-0(17)
0(9)-W(6)-0(17)

0(12)-W(5)-0(10)
0(12)-W(5)-0(14)
0(10)-W(5)-0(14)
0(12)-W(5)-0(13)
0(10)-W(5)-0(13)
0(14)-W(5)-0(13)
0(12)-W(5)-0(19)
0(10)-W(5)-0(19)
0(14)-W(5)-0(19)
0(13)-W(5)-0(19)
0(12)-W(5)-0(11)

1.46(5)
0.9300
1.30(5)
2.45(6)
0.8501
0.8501
0.9300
1.27(5)
1.37(5)
2.54(4)
0.8498
0.8499
0.8200
2.57(4)
1.53(6)
0.8501
0.8498
2.27(5)
2.45(7)
0.8505
0.8492
0.8498
0.8503

99.1(8)
102.8(7)
91.6(7)
99.9(7)
92.3(7)
156.1(6)
96.2(8)
164.7(6)
84.0(6)
86.0(6)
172.1(7)
84.3(6)
84.2(6)
72.7(6)
80.7(6)
98.8(7)
103.1(7)
85.8(6)
98.4(7)
162.2(6)
86.0(6)
100.2(7)
92.8(6)
156.6(6)
88.5(6)
172.9(6)
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0(10)-W(5)-0(11)
0(14)-W(5)-0(11)
0(13)-W(5)-0(11)
0(19)-W(5)-0(11)
O(50)#1-W(4)-O(13)#1
O(50)#1-W(4)-0(22)#1
O(13)#1-W(4)-0(22)#1
O(50)#1-W(4)-0(19)
O(13)#1-W(4)-0(19)
0(22)#1-W(4)-0(19)
O(50)#1-W(4)-O(8)
O(13)#1-W(4)-0(8)
0(22)#1-W(4)-0(8)
0(19)-W(4)-0(8)
O(50)#1-W(4)-O(11)
O(13)#1-W(4)-0(11)
0(22)#1-W(4)-0(11)
0(19)-W(4)-0(11)
0(8)-W(4)-O(11)
0(23)-W(8)-0(25)
0(23)-W(8)-0(28)
0(25)-W(8)-0(28)
0(23)-W(8)-0(22)
0(25)-W(8)-0(22)
0(28)-W(8)-0(22)
0(23)-W(8)-0(20)
0(25)-W(8)-0(20)
0(28)-W(8)-0(20)
0(22)-W(8)-0(20)
0(23)-W(8)-0(24)
0(25)-W(8)-0(24)
0(28)-W(8)-0(24)
0(22)-W(8)-0(24)
0(20)-W(8)-0(24)
O(41)#2-W(7)-O(16)
O(41)#2-W(7)-0(6)
0(16)-W(7)-0(6)
O(41)#2-W(7)-0(18)
0O(16)-W(7)-O(18)
0(6)-W(7)-0(18)
O(41)#2-W(7)-0(21)
0(16)-W(7)-0(21)
0(6)-W(7)-0(21)
0(18)-W(7)-0(21)
O(41)#2-W(7)-O(17)
0(16)-W(7)-0(17)
0(6)-W(7)-0(17)
0(18)-W(7)-0(17)
0(21)-W(7)-0(17)
0(5)-W(1)-0(9)

81.8(6)
84.0(6)
81.7(6)
72.7(5)
99.3(8)

102.0(7)
90.6(7)
99.2(7)
90.9(6)

158.2(6)
97.3(8)

163.3(6)
84.1(7)
88.3(6)

172.1(7)
83.9(6)
85.1(6)
73.4(5)
79.9(6)
98.8(7)
99.6(8)
91.9(8)

104.5(7)

156.5(6)
87.3(7)
97.8(7)
87.6(7)

162.5(6)
86.3(6)

171.3(6)
72.9(5)
83.6(6)
83.7(6)
79.5(5)

100.4(7)
99.1(8)
90.6(7)

102.5(7)

157.0(6)
88.4(7)
97.3(8)
88.4(7)

163.5(6)
86.1(7)

173.7(7)
73.5(6)
82.6(6)
83.6(6)
81.3(6)

100.2(8)

0(5)-W(1)-0(10)
0(9)-W(1)-0(10)
0(5)-W(1)-0(4)
0(9)-W(1)-0(4)
0(10)-W(1)-O(4)
0(5)-W(1)-0(3)
0(9)-W(1)-0(3)
0(10)-W(1)-0(3)
0(4)-W(1)-0(3)
0(5)-W(1)-0(7)
0(9)-W(1)-0(7)
0(10)-W(1)-0(7)
0(4)-W(1)-0(7)
0(3)-W(1)-0(7)
0(26)-W(9)-0(21)
0(26)-W(9)-O(18)#1
0(21)-W(9)-O(18)#1
0(26)-W(9)-0(25)
0(21)-W(9)-0(25)
O(18)#1-W(9)-0(25)
0(26)-W(9)-0(27)
0(21)-W(9)-0(27)
O(18)#1-W(9)-0(27)
0(25)-W(9)-0(27)
0(26)-W(9)-0(24)
0(21)-W(9)-0(24)
O(18)#1-W(9)-0(24)
0(25)-W(9)-0(24)
0(27)-W(9)-0(24)
0(51)#1-W(2)-0(8)
0(51)#1-W(2)-0(3)
0(8)-W(2)-0(3)
O(51)#1-W(2)-0(28)#1
0(8)-W(2)-0(28)#1
0(3)-W(2)-0(28)#1
0(51)#1-W(2)-0(2)
0(8)-W(2)-0(2)
0(3)-W(2)-0(2)
0(28)#1-W(2)-0(2)
0(51)#1-W(2)-0(7)
0(8)-W(2)-0(7)
0(3)-W(2)-0(7)
0(28)#1-W(2)-0(7)
0(2)-W(2)-0(7)
O(1)-W(3)-0(27)#1
0(1)-W(3)-0(6)
0(27)#1-W(3)-0(6)
0(1)-W(3)-0(2)
0(27)#1-W(3)-0(2)
0(6)-W(3)-0(2)

101.6(7)
87.4(7)
101.4(8)
92.5(7)
156.6(6)
101.1(8)
158.6(7)
86.5(6)
85.1(7)
172.0(8)
86.4(6)
82.9(6)
73.8(6)
72.4(6)
99.5(8)
101.1(8)
89.0(7)
100.7(8)
92.7(7)
157.5(6)
95.7(8)
164.6(7)
85.4(7)
87.1(7)
173.1(7)
84.3(6)
84.7(6)
73.2(6)
80.9(6)
102.1(8)
101.5(8)
94.1(7)
100.1(7)
85.0(7)
158.1(8)
100.1(8)
157.1(7)
87.3(7)
85.3(7)
172.3(7)
84.8(6)
74.2(7)
83.9(6)
73.6(6)
102.0(8)
102.6(8)
87.5(7)
100.4(8)
91.0(7)
156.7(7)
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0(1)-W(3)-0(4)
O(27)#1-W(3)-0(4)
0(6)-W(3)-0(4)
0(2)-W(3)-0(4)
O(1)-W(3)-0(7)
O(27)#1-W(3)-0(7)
0(6)-W(3)-0(7)
0(2)-W(3)-0(7)
0(4)-W(3)-0(7)
0(30)-Yh(1)-0(40)
0(30)-Yh(1)-0(32)
0(40)-Yh(1)-0(32)
0(30)-Yh(1)-0(34)
0(40)-Yh(1)-0(34)
0(32)-Yh(1)-0(34)
0(30)-Yh(1)-O(38)
0(40)-Yh(1)-0(38)
0(32)-Yh(1)-0(38)
0(34)-Yh(1)-0(38)
0(30)-Yh(1)-N(1)
0(40)-Yb(1)-N(1)
0(32)-Yb(1)-N(1)
0(34)-Yb(1)-N(1)
0(38)-Yb(1)-N(1)
0(30)-Yb(1)-N(2)
0(40)-Yb(1)-N(2)
0(32)-Yb(1)-N(2)
0(34)-Yb(1)-N(2)
0(38)-Yb(1)-N(2)
N(1)-Yb(1)-N(2)
0(30)-Yh(1)-0(36)
0(40)-Yh(1)-O(36)
0(32)-Yh(1)-0(36)
0(34)-Yh(1)-0(36)
0(38)-Yh(1)-0(36)
N(1)-Yb(1)-O(36)
N(2)-Yb(1)-0(36)
0(30)-Yh(1)-N(3)
0(40)-Yb(1)-N(3)
0(32)-Yb(1)-N(3)
0(34)-Yb(1)-N(3)
0(38)-Yb(1)-N(3)
N(1)-Yb(1)-N(3)
N(2)-Yb(1)-N(3)
0(36)-Yb(1)-N(3)
0(30)-Yh(1)-C(1)
0(40)-Yb(1)-C(1)
0(32)-Yh(1)-C(1)
0(34)-Yh(1)-C(1)
0(38)-Yh(1)-C(1)

100.7(8)
157.2(7)
85.1(6)
87.4(7)
172.1(7)
84.0(6)
82.5(6)
74.2(6)
73.6(6)
87.1(6)
131.7(7)
78.7(6)
80.0(7)
149.5(6)
89.4(7)
77.9(7)
130.7(6)
143.3(7)
73.4(6)
66.8(7)
77.4(6)
65.1(6)
72.2(6)
134.0(7)
139.4(7)
133.1(6)
72.0(6)
66.4(7)
7LA(7)
119.3(6)
144.6(6)
73.2(6)
73.7(6)
130.4(7)
92.7(6)
133.0(6)
64.0(6)
73.7(7)
65.4(7)
135.5(7)
134.6(7)
65.3(7)
126.2(7)
114.5(7)
TLA(T)
19.4(7)
86.1(7)
112.8(7)
72.7(8)
93.1(7)

N(1)-Yb(1)-C(1)
N(2)-Yb(1)-C(1)
0(36)-Yh(1)-C(1)
N(3)-Yb(1)-C(1)
0(30)-Yh(1)-C(7)
0(40)-Yh(1)-C(7)
0(32)-Yh(1)-C(7)
0(34)-Yh(1)-C(7)
0(38)-Yh(1)-C(7)
N(1)-Yb(1)-C(7)
N(2)-Yb(1)-C(7)
0(36)-Yh(1)-C(7)
N(3)-Yb(1)-C(7)
C(1)-Yb(1)-C(7)
0(17)-P(1)-0(11)
0(17)-P(1)-O(24)#1
O(11)-P(1)-O(24)#1
0(17)-P(1)-0(7)
0(11)-P(1)-0(7)
0(24)#1-P(1)-0(7)
P(1)-0(17)-W(6)
P(1)-0(17)-W(7)
W(6)-O(17)-W(7)
P(1)-0(7)-W(2)
P(1)-0(7)-W(3)
W(2)-0(7)-W(3)
P(1)-0(7)-W(1)
W(2)-0(7)-W(1)
W(3)-0(7)-W(1)
W(6)-O(15)-Na(1)
W(6)-O(14)-W(5)
W(2)-0(3)-W(1)
W(6)-0(20)-W(8)
W(1)-0(9)-W(6)
W(8)-0(25)-W(9)
C(14)-0(36)-Yh(1)
C(21)-0(40)-Yb(1)
W(1)-O(10)-W(5)
C(14)-0(35)-H(35)
W(4)-O(19)-W(5)
W(9)-0(21)-W(7)
W(2)-0(8)-W(4)
C(7)-0(31)-Na(1)
W(3)#1-0(27)-W(9)

W(7)#2-0(41)-Na(1)

W(7)-O(16)-W(6)
W(4)#1-0(22)-W(8)
W(8)-0(28)-W(2)#1
W(4)#1-0(13)-W(5)
C(16)-N(3)-C(20)

47.6(7)
138.8(7)
156.9(7)

90.9(8)
112.8(7)

76.1(6)

19.0(7)

83.6(7)
152.8(7)

46.2(7)

86.3(7)

91.1(7)
140.7(7)

93.8(7)
112.0(8)
112.9(8)
112.0(8)
106.5(9)
107.2(8)
105.7(8)
129.9(8)
126.9(9)

90.1(5)
125.1(8)
125.8(8)

90.9(6)
123.6(9)

90.2(5)

90.6(5)
154.0(12)
152.9(9)
123.1(10)
162.5(9)
150.3(9)
123.3(7)
122.0(18)
126.0(15)
151.1(9)
109.5
122.8(7)
163.1(10)
154.0(10)
131(2)
151.6(9)
172.0(10)
123.5(8)
151.8(8)
148.7(9)
163.6(9)
121(2)
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C(16)-N(3)-Yb(1)
C(20)-N(3)-Yb(1)
W(3)-0(2)-W(2)
W(9)#1-0(18)-W(7)
0(42)-Na(1)-0(31)
0(42)-Na(1)-0(15)
0(31)-Na(1)-0(15)
0(42)-Na(1)-0(41)
0(31)-Na(1)-0(41)
0(15)-Na(1)-0(41)
0(42)-Na(1)-0(43)
0(31)-Na(1)-0(43)
0(15)-Na(1)-0(43)
0(41)-Na(1)-0(43)
0(42)-Na(1)-0(44)
0(31)-Na(1)-0(44)
0(15)-Na(1)-0(44)
0(41)-Na(1)-0(44)
0(43)-Na(1)-0(44)
C(8)-0(33)-H(33)
W(7)-O(6)-W(3)
C(15)-0(37)-H(37)
C(13)-N(2)-C(9)
C(13)-N(2)-Yb(1)
C(9)-N(2)-Yb(1)
C(7)-0(32)-Yb(1)
C(8)-0(34)-Yb(1)
C(15)-0(38)-Yb(1)
C(21)-0(39)-H(39)
C(6)-N(1)-C(2)
C(6)-N(1)-Yb(1)
C(2)-N(1)-Yb(1)
W(1)-0(4)-W(3)
C(1)-0(30)-Yh(1)
N(2)-C(9)-C(10)
N(2)-C(9)-C(8)
C(10)-C(9)-C(8)
C(1)-0(29)-H(29)
C(11)-C(12)-C(13)
C(11)-C(12)-H(12)
C(13)-C(12)-H(12)
C(11)-C(10)-C(9)
C(11)-C(10)-H(10)
C(9)-C(10)-H(10)
N(2)-C(13)-C(12)
N(2)-C(13)-C(14)
C(12)-C(13)-C(14)
C(19)-C(18)-C(17)
C(19)-C(18)-H(18)
C(17)-C(18)-H(18)

120.3(18)
118.7(16)
121.3(9)
150.8(9)
99.3(13)
176(2)
82.7(9)
98.5(12)
155.0(13)
80.5(7)
88(2)
109.5(15)
88.2(13)
88.4(14)
85(2)
80.6(13)
98.5(13)
83.7(12)
168.6(16)
109.4
149.1(9)
109.5
120(2)
120.5(16)
119.0(18)
123.9(17)
123.0(18)
121.8(16)
1095
122(2)
119.8(17)
118.2(15)
122.0(8)
123.6(19)
122(3)
114(2)
124(2)
109.5
117(3)
1216
1216
118(2)
120.8
120.8
120(2)
113(3)
127(3)
118(3)
120.9
120.8

N(1)-C(6)-C(5)
N(1)-C(6)-C(7)
C(5)-C(6)-C(7)
N(1)-C(2)-C(3)
N(1)-C(2)-C(1)
CR)-C(2)-C(1)
C(4)-C(5)-C(6)
C(4)-C(5)-H(5)
C(6)-C(5)-H(5)
C(10)-C(11)-C(12)
C(10)-C(11)-H(11)
C(12)-C(11)-H(11)
C(5)-C(4)-C(3)
C(5)-C(4)-H(4)
C(3)-C(4)-H4)
0(29)-C(1)-0(30)
0(29)-C(1)-C(2)
0(30)-C(1)-C(2)
0(29)-C(1)-Yb(1)
0(30)-C(1)-Yh(1)
C(2)-C(1)-Yb(1)
C(18)-C(19)-C(20)
C(18)-C(19)-H(19)
C(20)-C(19)-H(19)
P(1)-0(11)-W(4)
P(1)-0(11)-W(5)
W(4)-O(11)-W(5)
P(1)#1-0(24)-W(9)
P(1)#1-0(24)-W(8)
W(9)-0(24)-W(8)
0(39)-C(21)-0(40)
0(39)-C(21)-C(20)
0(40)-C(21)-C(20)
0(33)-C(8)-0(34)
0(33)-C(8)-C(9)
0(34)-C(8)-C(9)
0(31)-C(7)-0(32)
0(31)-C(7)-C(6)
0(32)-C(7)-C(6)
0(31)-C(7)-Yb(1)
0(32)-C(7)-Yb(1)
C(6)-C(7)-Yb(1)
N(3)-C(20)-C(19)
N(3)-C(20)-C(21)
C(19)-C(20)-C(21)
0(36)-C(14)-0(35)
0(36)-C(14)-C(13)
0(35)-C(14)-C(13)
0(38)-C(15)-0(37)
0(38)-C(15)-C(16)

120(3)
114(2)
125(3)
120(3)
114(2)
126(3)
118(3)
120.9
120.7
122(3)
119.1
119.2
120(3)
119.9
120.0
125(3)
118(3)
117(3)
161(2)
37.0(14)
80.4(16)
120(3)
119.8
119.9
128.9(8)
127.3(8)
91.0(5)
128.9(8)
127.5(8)
90.5(4)
125(2)
120(2)
115(2)
122(3)
120(3)
117(2)
123(3)
120(3)
117(3)
160(2)
37.1(12)
79.6(15)
119(2)
114(2)
126(2)
126(2)
120(3)
113(2)
123(2)
120(2)
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0(37)-C(15)-C(16) 117(2) C(23)-N(4)-Na(2) 125(3)
C(2)-C(3)-C(4) 119(3) C(27)-N(4)-Na(2) 120(3)
C(2)-C(3)-H(3) 1205 H(54A)-0(54)-H(54B) 109.5
C(4)-C(3)-H(3) 1205 N(4)-C(23)-C(24) 131(4)
C(16)-C(17)-C(18) 121(3) N(4)-C(23)-C(22) 116(5)
C(16)-C(17)-H(17) 119.3 C(24)-C(23)-C(22) 113(5)
C(18)-C(17)-H(17) 119.4 C(22)-0O(47)-H(47) 109.1
N(3)-C(16)-C(17) 120(3) C(22)-0(46)-Na(2) 121(4)
N(3)-C(16)-C(15) 113(2) C(26)-C(27)-N(4) 119(4)
C(17)-C(16)-C(15) 127(2) C(26)-C(27)-C(28) 126(4)
C(28)-0(44)-Na(1) 161(4) N(4)-C(27)-C(28) 115(4)
O(47)-C(22)-0O(46) 124(7) 0(44)-C(28)-0O(45) 128(5)
0(47)-C(22)-C(23) 118(7) 0(44)-C(28)-C(27) 117(4)
0(46)-C(22)-C(23) 114(6) 0(45)-C(28)-C(27) 115(4)
H(55A)-0(55)-H(55B) 109.5 H(53A)-0(53)-H(53B) 109.5
C(25)-C(26)-C(27) 125(4) 0(49)-Na(2)-0(48) 171(2)
C(25)-C(26)-H(26) 117.7 0(49)-Na(2)-0(45) 83.4(17)
C(27)-C(26)-H(26) 117.7 0(48)-Na(2)-0(45) 89.7(18)
H(58A)-0(58)-H(58B) 109.5 0(49)-Na(2)-N(4) 88.0(16)
C(23)-C(24)-C(25) 114(4) 0(48)-Na(2)-N(4) 93.8(18)
C(23)-C(24)-H(24) 123.2 0(45)-Na(2)-N(4) 64.5(13)
C(25)-C(24)-H(24) 123.1 0(49)-Na(2)-0(46) 94.1(15)
C(28)-0(45)-Na(2) 126(3) 0(48)-Na(2)-0(46) 94.3(18)
H(56A)-0(56)-H(56B) 109.5 0(45)-Na(2)-0(46) 128.0(13)
C(26)-C(25)-C(24) 117(4) N(4)-Na(2)-0(46) 63.6(11)
C(26)-C(25)-H(25) 1216 H(57A)-0(57)-H(57B) 109.5
C(24)-C(25)-H(25) 1215 H(52A)-0(52)-H(52B) 109.5
C(23)-N(4)-C(27) 115(4)
Symmetry transformations used to generate equivalent atoms:
#1 -X,y,-2+3/2  #2 -X,-y+1,-z+1
Table S3. Details of hydrogen bonds in hybrid 1
D-H..A d(D-H) d(H..A) d(D...A) <(DHA)
0O(35)-H(35)...0(39)#3 0.82 1.75 2.55(2) 165.4
O(37)-H(37)...0(52)#5 0.82 1.84 2.63(4) 162.3
0(39)-H(39)...0(58)#6 0.82 1.92 2.63(5) 143.9
0(39)-H(39)...0(53)#6 0.82 2.64 3.36(8) 147.0
0(29)-H(29)...0(43)#7 0.82 2.26 2.93(4) 139.0
C(12)-H(12)...0(19)#4 0.93 261 3.46(3) 151.7
C(19)-H(19)...0(51)#7 0.93 2.41 3.05(3) 125.7
C(3)-H(3)...0(40)#7 0.93 2.66 3.44(3) 141.4
O(55)-H(55A)...0(44)4#8 0.85 2.46 3.26(6) 159.2
C(26)-H(26)...0(41) 0.93 2.60 3.42(4) 146.7
O(58)-H(58A)...0(39)#6 0.85 1.89 2.63(5) 144.5
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0O(56)-H(56B)...0(40)#8 0.85 2.82 3.39(4) 126.4
0O(54)-H(54A)...0(43) 0.85 2.50 3.10(11) 128.3
O(47)-H(47)...0(37)#10 0.82 2.65 3.35(5) 145.1
0(53)-H(53B)...0(58) 0.85 181 2.61(7) 154.7
0(53)-H(53A)...0(29)#11 0.85 1.89 2.70(7) 159.6
O(57)-H(57B)...0(27)#12 0.85 2.68 3.21(6) 121.4
O(57)-H(57B)...0(2)#13 0.85 2.35 3.16(6) 160.6
O(57)-H(57B)...0(28)#12 0.85 2.86 3.16(6) 103.3
0(52)-H(52B)...0(49)#7 0.85 2.16 2.72(6) 123.0
Symmetry transformations used to generate equivalent atoms:
#1-X,y,-z+3/2  #2 -x,-y+1,-z+1 #3 -xy,-z+1/2
#4 -x-1/2,-y+3/2,-z+1 #5x-1y,z #6 -x+1,y,-z+1/2
H#T -x+1/2,-y+3/2,-z+1 #8x+1y,z #9 -x+2y,-z+1/2
#10 x-1/2,y-1/12,z  #11 x+1/2,-y+3/2,z-1/2 #12 -x+1,-y+1,-z+1
Table S4. Screening of catalyst and solvent system for oxidation of sulfide?
Catalyst (mol%)
202 (1.2 equiv)
Solvent Temp/Time
o”s\‘o
Sulfoxlde Sulfone
S. No. Catalyst H,0, Solvent Temp (°C)/Time Yield (%) Sulfoxide
(mol%) (equiv) (min.) 2 3 Selectivity
1. 0.012 1.2 H,0 85/30 56.0 44.0 56%
2. 0.012 1.2 H,0 85/20 61.0 39.0 61%
3. 0.012 1.2 H,0 85/15 64.0 36.0 64%
4, 0.012 1.2 H,0 85/10 85.0 15.0 85%
5. 0.012 1.2 H,0 85/5 100 ND 100%
6. 0.006 1.2 H,0 85/10 65 ND 100%
7. 0.024 1.2 H,0 85/5 100 ND 100%
8. 0.012 1.2 H,0 r.t/60 ND ND -
9. 0.012 1.2 H,0 60/60 70 ND 100%
10. 0.012 - H,0 85/5 ND ND -
11. - 1.2 H,0 85/5 29.0 ND 100%
12. 0.012 1.2 CHsCN 85/60 23.0 ND 100%
13. 0.012 1.2 EtOH 85/60 20.0 20.0 50%
14. 0.012 1.2 Isopropanol 85/60 3.0 ND 100%
15. 0.012 1.2 MeOH 85/60 9.0 ND 100%
16. 0.012 1.2 THF 85/60 6.0 ND 100%
17. Na12[P2W150s6] 1.2 H,0 85/5 20.0 34 37%
(0.012%)
18. PDCH; (0.012%) 1.2 H,0 85/5 23.0 ND 100%
19. Yb(NOs3)3:5H,0 1.2 H,0 85/5 36.0 ND 100%
(0.012%)
20. Ks[P2W150s:] 1.2 H,0 85/5 38.8 24.5 61%
21. Na12[P2W150s6] 1.2 H,0 85/5 24.3 16.7 59.6%
+PDCH, (0.012%)
3performed with sulfide (1.0 equiv), H;O, (1.2 equiv), hybrid 1 catalyst (0.012 mol%) in water. ° Isolated yield. ND: Not detected.
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Figure S5. Proposed mechanism for the oxidation of sulfides using hybrid 1 with H,O, as oxidant

Recyclability and stability studies on hybrid 1 as catalyst

The recyclability studies on hybrid 1 in the oxidation of 4-(methylthio)phenol was investigated. In a simple process, the
4-(methylsulfinyl)phenol product was extracted by adding dichloromethane after first cycle of the oxidation
reaction and the remaining aqueous solutions containing hybrid 1 catalyst was reused directly for the next round of
reactions. In this way, hybrid 1 could be reused for at least three times without any significant reduction in catalytic
activity (see Table S5). The isolated sulfoxide yields from 1-3 cycles are given in Table S5. After completion of the
catalytic cycles, hybrid 1 was isolated by evaporating the aqueous layer under reduced pressure. The stability of
recycled hybrid 1 (after three catalytic cycles) were checked by using IR spectroscopy, which was almost similar to
that of the fresh hybrid 1 (see Figure S6). This suggested that the structural framework of hybrid 1 is stable even

after three catalytic cycles.
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Table S5. Recyclability of hybrid 1 catalyst in the oxidation of 4-(methylthio)phenol by H202

Run Sulfoxide %
1 100
2 98.42
3 95.18
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Figure S6. Comparison of IR spectra of hybrid 1: fresh catalyst (A) and recycled hybrid 1 catalyst after third cycle of
catalytic oxidation (B)
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'H and *C NMR spectra for new compounds
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Figure S7. ™H and 3C NMR of thiophene-3-ylmethyl 4-(methylthio)benzoate

24



19

2.0
21

a0

40

k] 0 Lo

T
2 3 E
i -~ 1

O I

i O

/S

T T T T T T T T T T T T T
180.0 170.0 1600 B0 0.0 400 30.0 M0 1008 i}

T T T T T
150.0 140 ﬂk\ 120.0 1100 10 90.0 B0,

N

TTIEE
T
TET425

Figure S8. H and *CNMR of 4-(methylthio)benzyl benzoate

25



” -
i
I |
""" " i S ah 20 k) "
AN A T
S4RARAAA B 3
O\/@
_S
i “ l
(AR RARELELELE LARLRRELEN RARRRLERLEY LARLRLRERE LALRRELEREN LALELRLELE LARLRREREF YRR LRLES RERLRLELLI LR | T T T AR RN LR |
170.0 160.0 1500 l-I-O.lJ\k Hyk\ 120.0 110.0 100.0 90.0 SO.UA }'-0.0 6.0 S0.0 40.0 30.0 20.0 | 10.0 0
Bh¥ BRES FRERE 2
Figure S9. *H and 3C NMR spectra of (4-((benzyloxy)methyl)phenyl)(methyl)sulfane

26



29

L9

\

|
| |
L] L |

B e B e S P e S o T A A A B A i S e LA L B S A e S o o o ML AL A A A S e e
7 5 L0

8.0 4.0 30 20

e
>

AA T ) NN

0z —=

sxsgEnTOC MwE e =
2EZzzod20 SEE FE3 S
AAAAREE 2H HAS ==E 3
PP A e B B =3 e -

) l ; ‘

L s o ML o L o o o I e B L o R R R R R LR e RS LR SR L N

(50.0 170.0 160.0 130.0 140.0 15/‘(0 120.0 | 110.0 100.0 90.0 80.0 70.0 60.0 50,0 0.0 300 20.0 10.0

~
==

= w e - = o
s 52 £ Z=¥ & 5 E
= = = L - = r
£ a8 w rES % 3 =

Figure S10. 'H and *3C NMR of (4-(2-chloroethoxy)phenyl)(methyl)sulfane

27



L

b A

0T

81

81

ihy

%\10&'.”'

POHIRD
HEER'D
LIKE9
SLFR'D
FLFT'L
SISTL
S5TL
FO9T°L
£59T°L

THHFL
LSO1'81
LEEFTT

([ i rd
GLOG'RT

£160°89

GHL9L
TN LL
6IST'LL

WEISII

LORESTI
HERL0EL

SIS0

Figure S11. *H and *C NMR of methyl(4-(pentyloxy)phenyl)sulfane

28



AN
/o]
o |
= — =
o
@ IFQ
o ]
e
== - !
16°E 80z, )
£t = —]
661
» !
z
- —

DO D

BISI'T

60681

19667

9915°9
16659

9551°L
1Zire

S0l

SIRT'Er

ETLE'LY
SHEN'R9
S5TFR9

6TFL"9L
SO0 LL
O8ST'LL

EEEN98

FEOEEI

DLLIFTL

rOr gl

LT66]

Figure S12. 'H and 13C NMR of ferrocene-4-(methylthio)aniline

29



1 i

| (' ‘

D, W W, L _ e A e~ A L
N — S — N — SR S S — T —

5.0 )k | 7;\ 6.0 20 4.0 A 30 | 20 | 10 {‘l’

a = am . < - -

8432 T OER 53 3 v 2

Wi A oo 3 = 4 =3

e 2 33 b S d -4

e e " " "
. ey i y "
1800 1700 1600 1300 1400 1su.o| 1200 1100 1000 900 su.u/k 700 600 50.0 ‘40.0 3u|u 200 10.0 0
5 g 5 528 2 2 2
3 : 3 LD % g g
Z & g FEE 2 &

Figure S13. 'H and 3C NMR of 4-(methylsulfinyl)phenol (2)
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Figure S14. *H and 3C NMR of 2-(ethylsulfinyl)aniline (4)
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Figure S15. 'H and 3C NMR of 2-(propylsulfinyl)aniline (5)
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Figure S16. 'H and 3C NMR of 2-(butylsulfinyl)aniline (6)
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Figure S21. *H and 3 CNMR of 1-methyl-4-(methylsulfinyl)benzene (11)
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Figure S22. *H and 13C NMR of 4-(methylsulfinyl)benzaldehyde (12)
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Figure S23. 'H and *3C NMR of 1-(2-chloroethoxy)-4-(methylsulfinyl)benzene (13)
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Figure $26. 'H and 13C NMR of 1-(methylsulfinyl)-4-nitrobenzene (16)
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Figure S27. *H and 3C NMR of (4-(methylsulfinyl)phenyl)methanol (17)
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Figure S$28. *H and *CNMR of (4-(methylsulfinyl)benzyl benzoate (18)
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HR-MS spectra of new compounds
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Figure S30. HR-MS of thiophene-3-ylmethyl 4-(methylyhio)benzoate
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Figure S31. HR-MS of 4-(methylthio)benzyl benzoate
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Figure S32. HR-MS of (4-((benzyloxy)methyl)phenyl)(methyl)sulfane
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Figure S33. HR-MS of ((4-(2-chloroethoxy)phenyl)(methyl)sulfane
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Figure S34. HR-MS of methyl(4-(pentyloxy)phenyl)sulfane
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Figure S35. HR-MS of ferrocene-4-(methylthio)aniline
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Figure S36. HR-MS of 4-(methylsulfinyl)phenol
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Figure S37. HR-MS of 2-(ethylsulfinyl)aniline
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Figure S38. HR-MS of 2-(propylsulfinyl)aniline
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Figure S39. HR-MS of 2-(butylsulfinyl)aniline
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Figure S40. HR-MS of 4-(methylsulfinyl)aniline
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Figure S41. HR-MS of ferrocene-4-(methylsulfinyl)aniline
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Figure S43. HR-MS of 4-(methylsulfinyl)phenyl benzoate
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Figure S44. HR-MS of 1-methyl-4-(methylsulfinyl)benzene
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Figure S45. HR-MS of 4-(methylsulfinyl)benzaldehyde
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Figure S46. HR-MS of 1-(2-chloroethoxy)-4-(methylsulfinyl)benzene
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Figure S47. HR-MS of 1-(methylsulfinyl)-4-(pentyloxy)benzene
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Figure S48. HR-MS of thiophen-3-ylmethyl 4-(methylsulfinyl)benzoate
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Figure S49. HR-MS of 1-(methylsulfinyl)-4-nitrobenzene
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Figure S50. HR-MS of (4-(methysulfinyl)phenyl)methanol
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Figure S51. HR-MS of (4-(methysulfinyl)benzyl benzoate
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Figure S52. HR-MS of 1-((benzyloxy)methyl)-4-(methylsulfinyl)benzene
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