Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions

Chun-Shuai Cao,^a Huan-Cheng Hu,^a Hang Xu,^a Wan-Zhen Qiao,^a and Bin Zhao^{a*}

Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China. Fax: (+86)-22-23502458 E-mail: zhaobin@nankai.edu.cn.

Figure S1. (a) The coordinated environments of H₂btz ligand in 1 and (b) H₃ttz ligand in 2.

Figure S2. Thermogravimetric analyses curves of 1 (red) and 2 (black).

Figure S3. The PXRD patterns of 1 (a) and 2 (b), simulated from the single-crystal data (black), synthesized compounds (red).

Figure S4. The PXRD patterns of compound 1 (a) and 2 (b) after immersing in various organic solvents.

Figure S5. The PXRD patterns of **1** (a) and **2** (b) after being exposured to aqueous solutions with various pH values from 1.0 to 14.0.

Fig. S6. Solid-state photoluminescence spectra of H_2btz ($\lambda_{excited} = 260$ nm).

Fig. S7. The emission spectra of 1 (a) and 2 (b) ($\lambda_{\text{excited}} = 260 \text{ nm}$).

Fig. S8. The fluorescence intensity of 1 (a) and 2 (b) before and after dropping others anions except for $Cr_2O_7^{2-}$ or CrO_4^{2-}

Fig. S9. The fluorescence intensity of 1 (a) and 2 (b) before and after dropping some amount of pure water.

Fig. S10. The intensity plots of 1 vs log $[Cr_2O_7^{2-}]$ (a) and 1 vs log $[CrO_4^{2-}]$ (b).

Fig. S11. The intensity plots of 2 vs log $[Cr_2O_7^{2-}]$ (a) and 2 vs log $[CrO_4^{2-}]$ (b).

Fig. S12. The PXRD patterns of 1 (a) and 2 (b) after five recyclings.

Fig. S14. UV-vis spectra of the $K_2Cr_2O_7(a)$ and $K_2CrO_4(b)$ solutions

Samples	concentration range (mol L-1)	b	K _{sv}	$I_0/I=b+K_{sv}[C]$
1-Cr ₂ O ₇ ²⁻	2.0×10 ⁻⁶ ~1.8×10 ⁻³	1.149	4.23×10 ³ L mol ⁻	$I_0/I = 1.149 + 4.23 \times 10^3 \times [Cr_2O_7^{2-1}]$
1- CrO ₄ ²⁻	1.0×10 ⁻⁵ ~1.8×10 ⁻³	1.010	3.19×10 ³ L mol ⁻	$I_0/I = 1.010+ 3.19 \times 10^3 \times [CrO_4^{2-}]$
2- Cr ₂ O ₇ ²⁻	1.8×10 ⁻⁵ ~1.8×10 ⁻³	1.113	2.19×10 ³ L mol ⁻	$I_0/I = 1.113+ 2.19 \times 10^3 \times [Cr_2O_7^{2}]$
2- CrO ₄ ²⁻	2.0×10 ⁻⁵ ~1.8×10 ⁻³	0.8777	2.35×10 ³ L mol ⁻	$I_0/I = 0.8777+2.35 \times 10^3 \times [CrO_4^{2-}]$

Table S1. the relationship between the concentration of $Cr_2O_7^{2-}/CrO_4^{2-}$ and the quenching effect.

Compounds	Cr (VI) of CrO_4^{2-} (ppm)	Cr (VI) of $Cr_2O_7^{2-}$ (ppm)	
1	2.042	0.1140	
2	0.0081	0.0141	
detectable limit	0.0036		

Table S2 The ICP results of recycled $1 \mbox{ and } 2$