# Cluster Evolution during the Early Stages of Heating Explosives and its Relationship to Sensitivity: A Comparative Study of TATB, β-HMX and PETN by Molecular Reactive Force Field Simulations

### Yushi Wen, Chaoyang Zhang,\*Xianggui Xue, and Xinping Long

Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P. O. Box 919-327, Mianyang, Sichuan 621900, China.

## **Electronic Supplementary Information**

## **Table of Contents**

- S1. The detailed information of the supercells.
- S2. Validation of ReaxFF\_lg to this work.
- S3. List of bond order minimum values used to determine molecules.
- S4. The products in different temperatures of TATB, HMX and PETN.
- S5. The evolutions of atom-atom pair correlation functions of TATB, HMX, and PETN heated

at 2500 K.

S6. References

## S1. The detailed information of the supercells

| supercells                              | ТАТВ    |             | HMX    |        | PETN   |        |        |        |        |
|-----------------------------------------|---------|-------------|--------|--------|--------|--------|--------|--------|--------|
| enlargement<br>times from unit<br>cells | 6×6×6   |             |        | 8×5×5  |        |        | 4×3×7  |        |        |
|                                         | a       | b           | c      | a      | b      | c      | a      | b      | c      |
| Lattice                                 | 54.06   | 54.17       | 40.87  | 52.32  | 55.25  | 43.50  | 53.16  | 40.47  | 47.81  |
|                                         | Å       | Å           | Å      | Å      | Å      | Å      | Å      | Å      | Å      |
| Parameters                              | α       | β           | γ      | α      | β      | γ      | α      | β      | γ      |
|                                         | 108.58° | 119.97<br>° | 91.82° | 90.00° | 90.00° | 90.00° | 90.00° | 90.00° | 90.00° |
| Amounts of molecules                    | 432     |             | 400    |        | 336    |        |        |        |        |
| Amounts of atoms                        | 10368   |             | 11200  |        | 9744   |        |        |        |        |

Table s1. The detailed information of the supercells



Fig. s1. Supercells of TATB,  $\beta$ -HMX and PETN. The carbon, hydrogen, oxygen and nitrogen atoms are indicated in grey, white, red and blue, respectively.

#### S2. Validation of ReaxFF\_lg to this work

The validity of ReaxFF\_lg to the three representatives has also been reexamined in this work from two aspects: (1) cell geometries and packing densities. 10ps NPT simulations at 273K and atmospheric pressure using ReaxFF\_lg were implemented to obtain the initial configurations of TATB, HMX and PETN; and (2) reaction product kinds. Upon the initial configurations of three representatives, a 50 ps NVT (3000K) heating simulation was conducted for each. As results, the NPT simulations showed that the lattice parameters of TATB, HMX and PETN reduce about -1.6%, -1.2 %, and -1.1% on average, namely, there are only a 4.76%, 3.5 %, and 3.2% density errors compared with the experimental values, respectively (Table s2). Table s3 also, indicating that ReaxFF\_lg can appropriately describe the physical processes of TATB, HMX and PETN. The initial chemical species of our thermal simulations also confirmed that ReaxFF\_lg can appropriately describe the chemical behaviors of TATB, HMX and PETN under high temperatures ().

| explosives | Lattice parameters of supercells | Expt. | ReaxFF_lg | a,b and c error | density error |  |
|------------|----------------------------------|-------|-----------|-----------------|---------------|--|
|            | a                                | 54.06 | 53.19     | -1.61%          |               |  |
| ТАТВ       | b                                | 54.17 | 53.31     | -1.59%          | 4.76%         |  |
|            | с                                | 40.87 | 40.22     | -1.60%          |               |  |
| НМХ        | a                                | 52.32 | 51.69     | -1.2%           |               |  |
|            | b                                | 55.25 | 54.59     | -1.2%           | 3.5%          |  |
|            | с                                | 43.50 | 42.98     | -1.2%           |               |  |
| PETN       | a                                | 53.16 | 52.58     | -1.1%           |               |  |
|            | b                                | 40.47 | 39.98436  | -1.2%           | 3.2%          |  |
|            | с                                | 47.81 | 47.28409  | -1.1%           |               |  |

Table s2. The results of NPT simulations (T=273K and P=1atom)

|                      | TA                                      | ГВ                                                     | ]                  | HMX                                                                              | PETN         |                                                                                                           |  |
|----------------------|-----------------------------------------|--------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------|--|
| chemical species     | <sup>a</sup> DFT Calculation            | ReaxFF_lg<br>Calculation                               | <sup>b</sup> Expt. | ReaxFF_lg                                                                        | ° Expt.      | ReaxFF_lg                                                                                                 |  |
| CO <sub>2</sub>      | $\checkmark$                            | $\checkmark$                                           | $\checkmark$       | $\checkmark$                                                                     | $\checkmark$ | $\checkmark$                                                                                              |  |
| СО                   |                                         | exists                                                 | $\checkmark$       | $\checkmark$                                                                     | $\checkmark$ | $\checkmark$                                                                                              |  |
| C(s)                 | exists                                  | exists                                                 | $\checkmark$       | exists                                                                           |              |                                                                                                           |  |
| H <sub>2</sub> O     | $\checkmark$                            | $\checkmark$                                           | $\checkmark$       | $\checkmark$                                                                     | $\checkmark$ | $\checkmark$                                                                                              |  |
| N <sub>2</sub>       | $\checkmark$                            | $\checkmark$                                           | $\checkmark$       | $\checkmark$                                                                     | $\checkmark$ | $\checkmark$                                                                                              |  |
| H <sub>2</sub>       | exists                                  | $\checkmark$                                           | $\checkmark$       | $\checkmark$                                                                     | $\checkmark$ | $\checkmark$                                                                                              |  |
| CH <sub>4</sub>      |                                         | exists                                                 | $\checkmark$       | exists                                                                           | exists       | exists                                                                                                    |  |
| HCN                  |                                         |                                                        | exists             | exists                                                                           |              |                                                                                                           |  |
| Other<br>(very tiny) | NCO, NCO <sub>2</sub> , CN <sub>2</sub> | NO,NO <sub>2</sub> ,HONO,<br>HON,NH <sub>3</sub> ,OH,H | Not detected       | NO,NO <sub>2</sub> ,HONO,<br>HON,NH <sub>3</sub> ,OH,H,<br>CON,CH <sub>2</sub> O | NH3          | NO,NO <sub>2</sub> ,HONO,<br>HON,NH <sub>3</sub> ,OH,<br>C <sub>2</sub> O <sub>3</sub> ,CH <sub>2</sub> O |  |

## Table s3. The initial chemical species of our thermal simulations

 $\sqrt{-main products}$ 

<sup>a</sup> Calculated by Manaa et al.<sup>1</sup>

<sup>b</sup> Observed by Donald L. Ornellas.<sup>2</sup>

<sup>c</sup> Observed by Donald L. Ornellas.<sup>3</sup>

## S3. List of bond order minimum values used to determine molecules

| Atom type | Atom type | Bond order |  |  |
|-----------|-----------|------------|--|--|
| С         | N         | 0.3        |  |  |
| С         | С         | 0.55       |  |  |
| С         | 0         | 0.65       |  |  |
| С         | Н         | 0.4        |  |  |
| 0         | 0         | 0.65       |  |  |
| N         | 0         | 0.4        |  |  |
| 0         | Н         | 0.4        |  |  |
| Н         | Н         | 0.55       |  |  |
| Н         | N         | 0.55       |  |  |
| N         | N         | 0.55       |  |  |

Table s4. List of bond order minimum values used to determine molecules.

### S4. The products in different temperatures of TATB, HMX and PETN



Fig. s2. The products in different temperatures of TATB



Fig. s3. The products in different temperatures of HMX.



Fig. s4. The products in different temperatures of PETN



S5. The evolutions of atom-atom pair correlation functions of TATB, HMX, and PETN heated at 2500 K

Fig. s5. Evolution of atom-atom pair correlation functions of TATB heated at 2500 K.



Fig. s6. Evolution of atom-atom pair correlation functions of HMX heated at 2500 K.



Fig. s7. Evolution of atom-atom pair correlation functions of PETN heated at 2500 K.

We used atom-atom pair correlation functions or radius distribution functions (RDFs, g(r)) shown by Figs. s5-s7 to describe the evolution of heated TATB, HMX and PETN at 2500 K.

For TATB (Fig. s5), the largest g(r) of C-C is always located at r=1.45 Å with different intensity, suggesting the benzene structures retain during the heating. The largest g(r) of C-O is transferred from 2.35 to 1.25 Å, denoting the CO and CO<sub>2</sub> formation. Similarly, g(r) of N-N of 1.15 Å suggests the formation of N<sub>2</sub>. Also, g(r) can used to analyze the reactions in heated HMX and PETN.

#### **S6. References**

- (1) M. R. Manaa, E. J. Reed, L. E. Fried, and N. Goldman, J. Am. Chem. Soc. 2009, 131, 5483.
- (2) Donald L. Ornellas, *The Journal of Physical Chemistry* 1968, 72, 2390.
- (3) Donald L. Ornellas, John H. Carpenter and Stuart R. Gunn, *The Review of Scientific Insturments* 1966, 37, 907.