Supporting information

Synthesis, characterization and photovoltaic properties of π-conjugated copolymers with thieno-imidazole units in main chain

M. L. Keshtova*, S. A. Kuklin ${ }^{\text {a }}$, D. Yu. Godovsky ${ }^{\text {a }}$, F.Ch. Chen ${ }^{\text {d A. R. Khokhlov }{ }^{\text {a,b }} \text {, S.A. }}$ Siddiquic, and G. D Sharma ${ }^{c^{*}}$,

${ }^{\text {a }}$ Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova st., 28, 119991 Moscow, Russian Federation. E-mail:keshtov@ineos.ac.ru
${ }^{\text {b }}$ Lomonosov Moscow State University, Faculty of Physics, 1-2 Leninskiye Gory, Moscow,119991, Russian Federation
${ }^{\mathrm{c} R} \& \mathrm{D}$ Center for Engineering and Science, JEC group of Colleges, Jaipur Engineering College, Kukas, Jaipur 303101, India. E-mail: sharamgd in@yahoo.com; gdsharma273@gmail.com; Fax: +91-1426-511240;

Tel: +91-1426-227345
${ }^{\text {d}}$ Department of Photonics, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China E-mail: fcchen64@hotmail.com

Synthesis of copolymers

2, 7 -dibromobenzo[2,1-b;4,5-b']dithiophene -4,5-dion (1): synthesized according to the method, analogous to reported in literature [1]. Dark violet crystals with yield is 0.47 g (92 $\%)$. Tmelt $=235-238^{\circ}$ C. NMR $-1 \mathrm{H}(\mathrm{CDCl} 3,400 \mathrm{MHz}, \delta, \mathrm{ppm}): 7.25$ (c.2H). Found. \% C 31.60; H 0.50; Br 42.15; for C10H2Br2O2S2, calculated, \% C 31.77, H 0.53; Br 42.27.

4-(2-ethylhexyloxy)benzaldehyde (2): Synthesized according to the method [2]. Yield 11.7 $\mathrm{g}(87 \%)$, Tboil $=190-193 \mathrm{C}(2 \mathrm{~mm} \mathrm{Hg}), \mathrm{NMR}-1 \mathrm{H}(\mathrm{CDCl} 3,400 \mathrm{MHz}, \delta, \mathrm{ppm}): 9.86(\mathrm{c}, 1 \mathrm{H})$, 7.81 (d, J=8.7 Hz, 2H), 6.98 ((d, J=8.7 Hz, 2H), 3.91 (d, J=5.8 Hz, 2H), 1.74 (m. 1H), 1.541.28 (m, 8H), 0.99-0.82 (m, 6H). Found, \% C 76.47, H 9.37, for C15H22O2, calculated 76.88; H 9.46.

5-(2-etylhexyl)thiophene-2-carboxyaldehyde (3). Synthesized according to method [3][Yield $7.8 \mathrm{~g}(63 \%) . \mathrm{T}_{\text {boil }}=142-145{ }^{\circ} \mathrm{C}(2 \mathrm{~mm} . \mathrm{Hg}) . \mathrm{NMR}-.{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta, \mathrm{ppm}\right)$: $9.80(\mathrm{c}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, J = 3.7 Гц, 1H), 2.79 (d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.66-
$1.55(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. Found, \%: C 69.27; H 8.86; S 14.01. For $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{OS}$ calculated, \%: C 69.59; H 8.98; S 14.29.

5,8-dibromo-2-\{4-[(2ethylhexyl)oxy]phenyl\}-1H-bisthieno[3,2-e: $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ '-g] benzimidazole

(5). Into three neck flasc with the volume of 25 ml , reversible refrigerator, input for argon and magnetic mixer placed 0.5 g (1.32 mmol) 2,7-dibrombenzo[2,1-b;4,5-b']dithiophen-4,5dion (1), $0.31 \mathrm{~g}(1.32 \mathrm{mmol}) 4$-(2-ethylhexyloxy)benzaldehyde (2), $1.02 \mathrm{~g}(13.22 \mathrm{mmol})$ ammonium acetate and 10 g of ice acetic acid , thereafter the mixture was stirred at boiling in the flowof Argon during 7 hours. Reaction mass was cooled down to room temperature and casted into 100 ml of distilled water, product was extracted by chloroform. Extract was washed by saturated water solution of NaCl , dried by MgSO_{4} and steamed using rotor evaporator. Product was purified by coloumn chromatography (silicagel, eluenthexane/ethylacetate $=1: 1$). Obtained beige crystals. Yield $0.58 \mathrm{~g}(74 \%) \mathrm{T}_{\text {melt }}=202-204$ ${ }^{\circ} \mathrm{C} . \mathrm{NMR}^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \delta, \mathrm{ppm}\right.$.): 8.07 (d, J= $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (c, 2H), 7.05 (d, J= 8.7 $\mathrm{Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.33(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.89$ $(\mathrm{m}, 6 \mathrm{H}) . \operatorname{NMR}-{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta, \mathrm{ppm}.\right): 160.79,149.84,148.21,128.77,127.67$, $123.70,123.17,121.51,114.89,113.03,70.58,39.18,30.34,28.96,23.68,22.94,14.00$, 11.01. Found, \%: C 50.49; H 4.00; N 4.58; Br 26.84. For $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}$ calculated, \%: C 50.68; H 4.08; N 4.73, Br 26.98.

5,8-dibromo-2-[5-(2ethylhexyl)thiophen-2-yl]-1H-bisthieno[3,2-e:2, 3'-g] benzimidazole $\left(\mathbf{M}_{\mathbf{2}}\right)$. Synthesized analogous to comound 5. Yellow crystals. Yield $0.49 \mathrm{~g}(75 \%) . \mathrm{T}_{\text {melt }}=194-$ $195{ }^{\circ} \mathrm{C}$. NMR- ${ }^{1} \mathrm{H}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400\right.$ МГц, δ, ppm.): 9.85 (c, 1H), 7.79 (c, 2H), 7.56 (d, J = 3.6 $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.23(\mathrm{~m}, 8 \mathrm{H})$, $0.97-0.83$ (m, 6H). NMR- ${ }^{13} \mathrm{C}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 100 \mathrm{MHz}, \delta, \mathrm{ppm}.\right): 148.08,146.50$, 132.21, 128.80, 127.31, 126.82, 125.47, 113.26, 112.96, 112.69, 42.41, 34.69, 33.21, 29.65, 26.33, 23.75, 14.48, 11.23. Found, \%: C 47.18; H 3.64; N 4.48; Br 27.14. For $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~S}_{3}$ calculated, \%: C, 47.43; H, 3.81; N, 4.81 ; Br, 27.44.

5,8-dibromo-2-[1', $1^{\prime}, 2^{\prime}, 2^{\prime}, 3^{\prime}, 3^{\prime}, 4^{\prime}, 4^{\prime}$-octafluorobutyl]-1H-bisthieno[3,2-e: $2^{\boldsymbol{\prime}}, 3^{\boldsymbol{\prime}}$-g]
benzimidazole $\left(\mathbf{M}_{\mathbf{3}}\right)$. Synthesized analogous to compound 5. Yield (67 \%). NMR- ${ }^{1} \mathrm{H}$ (($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 400 \mathrm{MHz}, \delta, \mathrm{ppm}$.): 13.36.85 (s, 1H), $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{t}, 1 \mathrm{H}$. NMR ${ }^{19} \mathrm{~F}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 100 \mathrm{MHz}, \delta, \mathrm{ppm}.\right):-111.35,-124.32,-130.05,-139.03 \mathrm{ppm}$. Found, \%:

C 30.21; H 0.64; N 4.48; Br 26.84. For $\mathrm{C}_{15} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~F}_{8} \mathrm{~S}_{2}$ calculated, \%: C, 30.63; H, 0.68; N, 4.76 ; Br, 27.17.

5,8-Dibromo-2-(4-((2-ethylhexyl)oxy)phenyl)-1-octyl-1H-dithieno[2',3':3,4;3', 2':5,6] benzo[1,2-d]imidazole (\mathbf{M}_{1}) [4]. To a solution of $5(\mathrm{~g}, 9.31 \mathrm{mmol})$ in DMF (50 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.08 \mathrm{~g}, 22.34 \mathrm{mmol}$) was added and heated to $95{ }^{\circ} \mathrm{C}$ for 2 hours. Then cooled to room temperature. To it 1-iodooctane ($\mathrm{g}, 12.19 \mathrm{mmol}$) was added slowly. Reaction mixture was heated to $95^{\circ} \mathrm{C}$ overnight. After cooling to room temperature the reaction mixture was poured in water $(300 \mathrm{~mL})$. Organic phase was extracted by ethyl acetate via repeated washing in water. Dried over MgSO_{4}, solvent was removed under rotary evaporation. Crude product was purified by silica gel column chromatography (Hexane as eluent) to give a brown solid (g , 88%). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, 2 \mathrm{H}$, $8.7 \mathrm{~Hz}), 4.42(\mathrm{t}, 2 \mathrm{H}, 7.8 \mathrm{~Hz}), 3.95(\mathrm{~d}, 2 \mathrm{H}, 5.7 \mathrm{~Hz}), 1.55-0.85(\mathrm{~m}, 30 \mathrm{H})$. Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{OS}_{2}$: C, 56.25; H, 5.72; N, 3.98; Found: C, 55.99; H, 5.45; N, 3.56.

Synthesis of polymer P1. Into three neck flask with the volume of 25 ml , connected to inverse refrigerator and magnetic mixer placed in the flow of 0.2940 (0.5 mmol) 5,8 -dibromo-$2-\left[1^{\prime}, 1^{\prime}, 2^{\prime}, 2^{\prime}, 3^{\prime}, 3^{\prime}, 4^{\prime}, 4^{\prime}\right.$-octafluorobutyl]-1H-bisthieno[3,2-e:2', 3^{\prime}-g] benzimidazole $\left(\mathrm{M}_{3}\right)$. 0.3102 g (0.5 mmol) 4,7-bisc[5-(trimethylsilyl)thiophen-2il]2,1,3-benzothiadiazol 0.027 g $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$, added 20 ml of dry toluene. Reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ during 48 hous in argon , thereafter 0.02 g of 2-bromthiophene was added and 0.02 g of 2(tributylstannil)thiophene added and continued stirring during 5 hours. Than the mixture was cooled down to room temperature, product was precipitated in 200 ml of methanol and filtered. Polymer was then dissolved in chloroform and re-precipitated in methanol, afterwards it was purified by extraction by methanol, hexane and chloroform in Soxlett apparatus and dried in vacuum. Yield 75%. Calc. for $\mathrm{C}_{29} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}_{5} \mathrm{~F}_{8}, \%$, , $\mathrm{C} 47.93 ; \mathrm{H}, 1.39 ; \mathrm{N}$, 7.71; S,22.06; F, 20.91 Found: C, 47.98; H,1.27; N, 7.64; S,22.36; F, 20.41. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCI}_{3}, \delta, \mathrm{ppm}\right): 7.74-7.30$ ($6 \mathrm{H}, \mathrm{Ar}$), 7.10-6.89 (2H,alk).

Copolymer P2: P2 was synthesized analogous to P1. Yield 81%. Calc. for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{~S}_{6}, \%$: C,61.63; H,3.91; N,7.77; S,26. 68. Found: C,61.91; H,3.83; N,7.54; S,26. 38. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCI}_{3}, \delta, \mathrm{ppm}\right): 8.25-7.50(10 \mathrm{H}, \mathrm{Ar}), 3.75(2 \mathrm{H}$, aliph), 2.50-0.55 (15H, alk).

Copolymer P3: P3 was synthesized analogous to P1. Yield 87%. Calc. for $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{~S}_{5} \mathrm{O}_{1}, \%$: C,66.95; H,5.50; N,6. 64; S,19. 01. Found: C, 67.05; H, 5.47; N,6. 40; S, 18. 81. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCI}_{3}, \delta, \mathrm{ppm}$): $7.80-7.50(12 \mathrm{H}, \mathrm{Ar}), 3.90-0.55(34 \mathrm{H}, \mathrm{alk})$.

References

1. J. Hou, H.Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130 1614416145
2. B.C. Popere, A.M. Della Pelle, S. Thayumanavan, Macromolecules 2011, 44, 47674776
3. Zheng C., Pu S., Xu J., Luo M., Huang D., Shen L., Tetrahedron. 2007, 63, 54375449.
4. R. Satapathy , Y.H. Wu, and H.Ch. Lin Org. Lett., 2012, 14 (10), pp 2564-2567

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of monomer $\mathbf{M 1}$ in CDCl_{3}

Figure S2 (a) ${ }^{1} \mathrm{H}$ NMR spectra (b) ${ }^{13} \mathrm{C}$ NMR of $\mathbf{M 2}$ in CDCl_{3}

Figure S3. (a) ${ }^{1} \mathrm{H}$ NMR spectra of M3 in acetone -d and (b) ${ }^{19} \mathrm{~F}$ NMR spectra of M3

Figure S4. ${ }^{1}$ H NMR spectra of copolymer SB24

