Supporting Information

Microsolvation of LiBO₂ in Water: Anion Photoelectron Spectroscopy and *ab initio* Calculations

Zhen Zeng,¹ Gao-Lei Hou,¹ Jian Song,² Gang Feng,^{1,*} Hong-Guang Xu,¹ Wei-Jun

Zheng^{1,*}

¹Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

² Department of Physics, Henan Normal University, Henan, 453007, China

* Corresponding author. E-mail: zhengwj@iccas.ac.cn; fenggang@iccas.ac.cn Tel: +86 10 62635054, Fax: +86 10 62563167

Table S1 Relative energies of the low energy isomers of $LiBO_2(H_2O)_n^-$ (n = 0-5) as well as the comparison of their theoretical VDEs and ADEs based on wB97XD to the experimental measurements. All energies are in eV.

Isomor	٨E	ADE		VDE		Isomor	٨E	ADE		VDE	
Isomer	ΔE	Theo.	Expt.	Theo.	Expt.	Isomer	ΔE	Theo.	Expt.	Theo.	Expt.
LiBO ₂ -	0A' 0.00	0.89	0.81	0.92	0.83	4C'	0.61	0.21		0.37	
LiBO ₂ (H ₂ O) ⁻	1A' 0.00	0.44	0.46	0.46	0.53	4D'	0.63	0.03		0.09	
	1B' 0.04	0.71	0.71	0.69	0.74	4E'	0.64	0.20		0.34	
	1C' 0.21	1.04		1.09		4F'	0.70	0.06		0.55	
	1D' 0.32	0.29		0.38		4G'	0.74	0.13		0.63	
LiBO ₂ (H ₂ O) ₂	2A' 0.00	0.45	0.80	0.86	0.86	4H'	0.75	0.04		0.85	
	2B' 0.10	0.41	0.47	0.39	0.55	4I'	0.75	0.37		0.59	
	2C' 0.39	0.29		0.40		4J'	0.75	0.65	0.74	0.73	0.79
	2D' 0.40	0.81		0.80		4K'	0.77	0.41		0.76	
	2E' 0.42	0.45		0.72		4L'	0.79	0.27		0.59	
	2F' 0.45	0.21		0.28		4M	0.86	0.21		0.32	
	2G' 0.55	0.13		0.48		LiBO ₂ (H ₂ O) ₅ ⁻ 5A'	0.00	-0.11	0.33	0.38	0.55
	2H' 0.58	0.29		0.71		5B'	0.32	0.27		0.63	
	2I' 0.59	0.07		1.24		5C'	0.41	0.26		0.40	
	2J' 0.60	0.06		0.63		5D'	0.43	0.23		0.52	
LiBO ₂ (H ₂ O) ₃	3A' 0.00	0.19	0.38	0.44	0.50	5E'	0.46	0.11		0.23	
	3B' 0.02	0.20		0.64		5F'	0.46	0.03		0.12	
	3C' 0.15	-0.06		0.18		5G'	0.47	0.26		0.40	
	3D' 0.35	-0.10		1.19		5H'	0.54	-0.06		0.60	
	3E' 0.41	0.23		0.37		51'	0.57	0.07		0.64	
	3F' 0.50	0.23		0.50		5J'	0.58	-0.09		0.93	
	3G' 0.54	0.19		0.63		5K'	0.58	-0.12		0.54	
	3H' 0.58	0.09	0.73	0.76	0.92	5L'	0.59	-0.04		0.88	
	3I' 0.61	0.03		0.85		5M	0.62	-0.13		0.43	
LiBO ₂ (H ₂ O) ₄	4A' 0.00	0.25	0.42	0.47	0.57	5N'	0.63	-0.03		0.77	
	4B' 0.44	-0.29		0.49		50'	0.65	0.13		1.08	

Table S2 Relative energies of the low energy isomers of $LiBO_2(H_2O)_n^-$ (n = 0-5) as well as the comparison of their theoretical VDEs and ADEs based on CCSD(T) // B3LYP/6-311++G(d,p) to the experimental measurements. All energies are in eV.

Isomor		٨E	AI	DE	VDE		
Isolitei		ΔĽ	Theo.	Expt.	Theo.	Expt.	
LiBO ₂ -	0A	0.00	0.85	0.83	0.86	0.83	
$LiBO_2(H_2O)^-$	1A	0.00	0.72	0.71	0.69	0.74	
	1B	0.13	0.42	0.46	0.43	0.53	
	1C	0.26	0.34		0.40		
	1D	0.28	0.99		1.04		
$LiBO_2(H_2O)_2$	2A	0.00	0.43	0.47	0.40	0.55	
	2B	0.01	0.48	0.80	0.83	0.86	
	2C	0.12	0.35		0.42		
	2D	0.14	0.51		0.67		
	2E	0.23	0.81		0.81		
	2F	0.28	0.25		0.29		
	2G	0.39	0.35		0.49		
	2H	0.40	0.12		0.61		
	2I	0.45	0.56		0.69		
$LiBO_2(H_2O)_3$	3A	0.00	0.31	0.38	0.65	0.50	
	3B	0.21	0.29		0.40		
	3C	0.24	-0.16		0.39		
	3D	0.30	0.47		0.53		
	3E	0.37	0.72	0.73	0.72	0.92	
	3F	0.38	0.64		0.61		
	3G	0.40	0.10		0.78		
$LiBO_2(H_2O)_4$	4A	0.00	0.46	0.42	0.50	0.57	
	4B	0.42	0.30		0.38		
	4C	0.47	0.27		0.40		
	4D	0.49	0.09		0.12		
	4E	0.50	0.38		0.64		
	4F	0.50	0.01		0.54		
	4G	0.54	0.50	0.74	0.76	0.79	
	4H	0.58	0.20		0.61		
	4I	0.60	0.19		0.64		
	4J	0.60	0.13		0.82		
	4K	0.63	0.69		0.74		
	4L	0.63	0.32		0.57		
	4M	0.89	0.19		0.23		
$L_1BO_2(H_2O)_5$	5A	0.00	0.17	0.33	0.58	0.56	
	5B	0.18	0.02		0.41		
	5C	0.41	0.23		0.29		
	5D	0.48	0.45		0.50		
	5E	0.53	0.11		0.18		
	5F	0.53	0.34		0.49		
	5G	0.55	0.12		0.78		
	5H	0.55	0.16		0.69		
	51	0.56	0.09		0.81		
	JJ 512	0.57	0.35		0.44		
	5K	0.57	0.09		0.88		
	JL	0.57	0.18		0./1		
	JM	0.59	0.04		0.62		
	5N	0.60	0.27		0.40		
	50	0.61	0.28		1.01		

Figure S1 Optimized geometries of the typical low-lying isomers of $LiBO_2(H2O)_n^-$ (n = 0-5) based on wB97XD functional and 6-31++G(d,p) basis set. Relative energies and Li-O bond lengths (in Å) are indicated.

Figure S2 Optimized geometries of the typical low-lying isomers of $LiBO_2(H2O)_n$ (n = 0-5) neutral clusters based on wB97XD functional and 6-31++G(d,p) basis set. Relative energies and Li-O bond lengths (in Å) are indicated.

Figure S3 Optimized geometries of the typical low-lying isomers of $LiBO_2(H_2O)_n^-$ (n = 0-5) based on CCSD(T) // B3LYP/6-311++G(d,p). Relative energies and Li-O bond lengths (in Å) are indicated.

Figure S4 Optimized geometries of the typical low-lying isomers of $LiBO_2(H_2O)_n$ (n = 0-5) neutral clusters based on CCSD(T) // B3LYP/6-311++G(d,p). Relative energies and Li-O bond lengths (in Å) are indicated.