## **Electronic Supplementary Information**

## Solution-Processed Solar Cells Based on Inorganic Bulk Heterojunctions with Evident Hole Contribution to Photocurrent Generation

Zeliang Qiu,<sup>a</sup> Changwen Liu,<sup>a</sup> Guoxing Pan,<sup>b</sup> Weili Meng,<sup>a</sup> Wenjin Yue,<sup>a</sup> Junwei Chen,<sup>a</sup> Xun Zhou,<sup>a</sup> Fapei Zhang,<sup>b</sup> Mingtai Wang<sup>a,\*</sup>

<sup>a</sup>Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China <sup>b</sup>High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China

\*Corresponding author. Tel./Fax: 0086-551-65593171; Email address: mtwang@ipp.ac.cn



**Figure S1.** Characterization of the  $TiO_2$ -NA grown on FTO glass sheet. (a) SEM, (b) XRD, (c) TEM and (d) HRTEM. The HRTEM image in (d) was taken from the marked region on the TEM image in (c).

**Notes to Figure S1:** The nanorods have a length of ca. 600 nm and a diameter of 40–50 nm. The XRD diffraction peaks of the TiO<sub>2</sub>-NA match well rutile TiO<sub>2</sub> (JCPDS #86–0147, a = b = 4.594 Å and c = 2.959 Å). The HRTEM image of the TiO<sub>2</sub> nanorod (d) exhibits two-dimensional lattice structures, and the lattice fringes with interplanar spacings of d = 0.292 nm and d = 0.325 nm are clearly imaged, which match the spacing distances of (001) (d = 0.29586 nm) and (110) (d = 0.32484 nm) crystal planes of rutile TiO<sub>2</sub>, respectively. The lattice fringes of (001) planes are perpendicular to the growth direction, confirming that the TiO<sub>2</sub> nanorods in TiO<sub>2</sub>-NA grow along [001] direction.<sup>1</sup>



**Figure S2.** XRD patterns of differently crystallized Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs. (a)  $T_c = 300$  °C, (b)  $T_c = 350$  °C and (c)  $T_c = 400$  °C. The XRD pattern for Sb<sub>2</sub>S<sub>3</sub> is based on the data of orthorhombic Sb<sub>2</sub>S<sub>3</sub> (stibuite) (JCPDS card 42-1393); the  $\bullet$  marks identify the diffraction peaks for Sb<sub>2</sub>O<sub>3</sub> (Senarmontite, JCPDS card 72-1334).

**Notes to Figure S2:** The TiO<sub>2</sub>-NA diffraction peaks are not observed when Sb<sub>2</sub>S<sub>3</sub> is present, because it is covered by a thicker Sb<sub>2</sub>S<sub>3</sub> layer. In the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs with  $T_c = 300$  °C, we observed the considerably intensive diffraction peaks for Sb<sub>2</sub>O<sub>3</sub> (Senarmontite). However, increasing  $T_c$  to 350 °C, the diffraction peaks for Sb<sub>2</sub>O<sub>3</sub> gets significantly reduced. As  $T_c$  is increased to 400 °C, almost not Sb<sub>2</sub>O<sub>3</sub> is evident by XRD. Similarly, the presence of Sb<sub>2</sub>O<sub>3</sub> was also observed in the Sb<sub>2</sub>S<sub>3</sub> thermally annealed at 330 °C for 30 min in Ar atmosphere.<sup>2</sup> Some authors think that Sb<sub>2</sub>S<sub>3</sub> is oxidized into Sb<sub>2</sub>S<sub>3</sub> as it is exposed to air.<sup>3</sup> Note that the crystallized Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs samples were kept in N<sub>2</sub> atmosphere before XRD measurements; we let the samples be exposed to air for about 24 h after the first XRD measurements, the re-examination of the samples by XRD did not show any evident change in the diffraction peak intensity of Sb<sub>2</sub>O<sub>3</sub>, indicating that the oxidation of Sb<sub>2</sub>S<sub>3</sub> takes place during the annealing process.<sup>4</sup> Clearly, our XRD data show that increasing  $T_c$  from 300 to 400 °C reduces greatly the oxidation of Sb<sub>2</sub>S<sub>3</sub>, but enhances significantly the Sb<sub>2</sub>S<sub>3</sub> crystallinity in Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs.



**Figure S3.** Direct optical band gaps of the Sb<sub>2</sub>S<sub>3</sub> layers in Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs. (a) as-deposited, (b)  $T_c = 350$  °C and (c)  $T_c = 400$  °C. The band gaps is approximated using the direct band gap method, by plotting the squared absorbance versus energy and extrapolating to zero.

**Notes to Figure S3:** Since the difference between the band gaps for the samples with  $T_c = 350$  and 400 °C is quite small (<< 5%), the two samples have almost the same band-gap when considering the experimental errors; we take the averaged band gap of 1.67 eV for both samples for simplicity.



**Figure S4**. UPS spectra of the Sb<sub>2</sub>S<sub>3</sub> layers in the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 350 °C and 400 °C. (a) Comparison between the UPS spectra of samples. (b, c) Determination of the valence band maximum energy ( $E_{\text{VBM}}$ ) values.

**Notes to Figure S4:** UPS was used to determine the Fermi level ( $E_f$ ) and the valence band maximum ( $E_{VBM}$ ) with respect to vacuum level of the Sb<sub>2</sub>S<sub>3</sub> layers subjected to different crystallization temperatures ( $T_c$ ).<sup>5,6</sup> The cut-off binding energy ( $E_{cut-off}$ ) is determined by the intercept of the linear portion of the spectrum (high binding energy edge) with baseline, the difference between  $E_f$  and  $E_{VBM}$  is determined by the intersection of the linear portion of the spectra with the baseline in the low binding energy region. Accordingly, the  $E_{VBM}$  values for the Sb<sub>2</sub>S<sub>3</sub> layers with  $T_c = 350$  and 400 °C were

obtained to be -5.27 eV and -5.31 eV, respectively. The conduction band minimum ( $E_{\text{CBM}}$ ) values for the samples are further calculated by adding the corresponding optical band-gap (Figure S3) to  $E_{\text{VBM}}$ , that is,  $E_{\text{CBM}} = -3.60 \text{ eV}$  (for  $T_c = 350 \text{ °C}$ ) and -3.65 eV (for  $T_c = 400 \text{ °C}$ ). These results are comparable to the values of Sb<sub>2</sub>S<sub>3</sub> reported in the literature.<sup>7</sup> The difference between the  $E_{\text{VBM}}$  (or  $E_{\text{CBM}}$ ) energy levels for  $T_c = 350$  and 400 °C is rather small (<< 5%) and may be due to the experimental errors, we take the averaged  $E_{\text{VBM}}$  of -5.29 eV and  $E_{\text{CBM}}$  of -3.63 eV for both samples for simplicity.



**Figure S5.** Absorption spectrum of MEH-PPV films on quartz substrates. MEH-PPV film exhibits an absorption band in 400–600 nm due to  $\pi$ - $\pi$ \* transition with the absorption maximum at 510 nm.



**Figure S6.** IMPS spectra calculated from eq 3 in the main text with  $\tau_D = 10^{-3}$  s,  $\tau_h = 10^{-5}$  s,  $\omega = 0.01$  Hz– 50 kHz (a–b) except for  $\omega = 0.01$  Hz– 10 MHz for the (**①**) dots in plot (a). Other calculation parameters are: (a) (**□**)  $G_e = 4.95$  and  $G_h = 0$ ; ( $\Delta$ , **①**)  $G_h = 4.95$ ,  $\beta_h = 1$  and  $G_e = 0$ ; ( $\nabla$ )  $G_h = 4.95$ ,  $\beta_h = 0.5$  and  $G_e = 0$ ; (**④**)  $G_h = 4.95$ ,  $\beta_h = 0$  and  $G_e = 0$ . (b) ( $\Delta$ )  $G_e = -G_h = 4.95$ , and  $\beta_h = 1$ ; ( $\nabla$ )  $G_e = -G_h = 4.95$ ,  $\beta_h = 1/2$ ; (**○**)  $G_e = 4.95 \times 1.5$ ,  $G_h = -4.95/4$ , and  $\beta_h = 1/20$ . The solid symbols identify the time constants  $f_{min}$  values for electrons and holes; crossing points  $P_{HF}$  and  $P_{LF}$  have the frequencies of 8 MHz and 1 Hz, respectively.

Notes to Figure S6: This figure shows the dependence of the calculated IMPS shape  $(J_{ph} = J_e + J_h)$  on the parameters  $G_e$  and  $\beta_h$ , where  $J_e = G_e/(1 + i\omega\tau_D)$  and  $J_h = G_h[1 - \beta_h/(1 + i\omega\tau_h)]$ . For convenience, the crossing points of IMPS response with the real axis at high and low frequency are referred to as P<sub>HF</sub> and P<sub>LF</sub>, respectively; we also use "Jh", "Je" and "Jph" in subscripts to distinguish the kinds of the crossing points. Due to the serious trapping and fast recombination of holes in  $\text{Sb}_2\text{S}_3$ ,<sup>8,9</sup>  $\tau_h$  is set to be two orders of magnitude lower than  $\tau_D$  for calculation.

(1) IMPS response for  $J_e$  (Figure S6a): The simulated IMPS response for  $J_e$  shows one distorted semicircle in the fourth quadrant of complex plane due to the electron transport for no  $J_h$  contribution (i.e.,  $G_h = 0$ ), where the value of crossing point  $P_{LF-Je}$  is  $G_e$ , i.e., the  $J_e$  under steady-state condition.

(2) **IMPS response for**  $J_h$  (Figure S6a): The simulated IMPS response for  $J_h$  shows one distorted semicircle in the third quadrant of complex plane due to the trapped hole relaxation for no  $J_e$  contribution (i.e.,  $G_e = 0$ ); as the modulation frequency is rather high, the IMPS response for  $J_h$  will cross the real axis at  $P_{HF-Jh}$  with a value of  $G_h$  meaning a maximal  $J_h$  limit when the relaxation loss is absent; moreover, the crossing point  $P_{LF-Jh}$  value is the  $J_h$  under steady-state condition and strongly correlates with the parameter  $\beta_h$ , and a smaller  $\beta_h$  for a certain  $G_h$  makes the  $P_{LF-Jh}$  approaching  $P_{HF-Jh}$  in position.

(3) **IMPS response for**  $J_{ph}$  (Figure S6b): When both  $J_h$  and  $J_e$  are present, two semicircles can be obtained, in which the value of crossing point  $P_{LFJph}$  is  $J_{ph}$  (i.e.,  $= J_e + J_h = G_e + J_h$ ) that is the steady-state photocurrent limit determining the efficiency in practical devices, while the  $P_{HFJph}$  may not appear when the modulation frequency is not high enough. Given appropriate  $G_e$ ,  $G_h$  and  $\beta_h$ , one can get the IMPS response in a form of a single semicircle with the time constant dominated by the electron transport in the IV quadrant and the indiscernible semicircle for  $J_h$  (or the time constant for hole relaxation) in the III quadrant in agreement with experimental observations (Figure 7b in the main text), in which the crossing point  $P_{HFJph}$  has the value of  $G_h$ . Therefore, the IMPS responses going from the IV into III quadrant of complex plane is reasonably a strong indication of the contribution to photocurrent generation from the photogenerated holes in Sb<sub>2</sub>S<sub>3</sub> layer. Note, whether the semicircle for  $J_h$  in IMPS response is discernible depends significantly on  $\beta_h$  and the  $G_h$  relative to  $G_e$ ; in practice, the reduction in  $\beta_h$  for the hole trapping degree should also reduce the charge recombination and bring forth the increase in both  $G_e$  and  $G_h$ .



**Figure S7.** IMPS spectra calculated by eq 3 in the main text with  $\tau_D = 10^{-3}$  s,  $\tau_h = 10^{-5}$  s,  $\omega = 0.01$  Hz – 50 kHz. Other calculation parameters are:  $(\nabla) G_e = 4.95$ ,  $G_h = -4.95$ ,  $\beta_h = 1/2$ ;  $(\bigcirc) G_e = 4.95$ ,  $G_h = -4.95/2$ , and  $\beta_h = 1/2$ ;  $(\bigtriangleup) G_e = 4.95$ ,  $G_h = -4.95/4$  and  $\beta_h = 1/4$ ;  $(\Box) G_e = 4.95 \times 2.2$ ,  $G_h = -4.95 \times 1.2$ ,  $\beta_h = 1/10$ . Note, the magnified high frequency region is used to identify that the frequency of the turning point for the process change from electron transport to hole relaxation is not unchanged, but strongly depends on the  $G_e$ ,  $G_h$  and  $\beta_h$  values.



Figure S8. Sectional SEM image of Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 300 °C (a) and 450 °C (b).

**Notes to Figure S8:** The XRD data showed that the annealing at 300 °C results in a much lower Sb<sub>2</sub>S<sub>3</sub> crystallinity in Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs film with respect to samples crystallized at 350 and 400 °C (Figure S2). SEM image revealed that Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs with  $T_c = 300$  °C still exhibits a nanomorphology with the enlarged nanoparticles inside the Sb<sub>2</sub>S<sub>3</sub> layer, which is similar to the morphology in the as-deposited Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs film, but quite different from the formation of a crystallized and continuous Sb<sub>2</sub>S<sub>3</sub> layer with large grains around TiO<sub>2</sub> nanorods for  $T_c = 350-400$  °C. However, SEM results show that thermal annealing at 450 °C removes the major part of Sb<sub>2</sub>S<sub>3</sub> from TiO<sub>2</sub>-NA. The removal of Sb<sub>2</sub>S<sub>3</sub> is very likely by the Sb<sub>2</sub>S<sub>3</sub> evaporation because we got the dark substance inside the coverer over the sample. The disappearance of Sb<sub>2</sub>S<sub>3</sub> from TiO<sub>2</sub>-NA during thermal annealing is similar to migration of CdSe from TiO<sub>2</sub>-NA after over-annealing treatment reported in the literature.<sup>10</sup>



**Figure S9.** The J-V curve (a) and measured IMPS spectrum (b) of the solar cells based on the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 300 °C. The insets to (a) and (b) are the IPCE and IMVS spectra of the solar cell, respectively. The solid symbol on IMPS and IMVS plots identify the  $f_{min}$  point.

Notes to Figure S9: Annealing at  $T_c = 300$  °C results in the Sb<sub>2</sub>S<sub>3</sub> in Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs not well crystallized (Figure S2) and still in nanostructured state (Figure S8). The solar cells based on the

Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 300 °C has a much lower  $J_{sc}$  (or  $J_{ph}$ ), much smaller  $V_{oc}$ , much shorter electron lifetime  $\tau_{e}$  (= 0.48 ms), and a much longer transit time  $\tau_{D}$  (= 0.42 ms) (Figure S9b), as compared to the solar cells with  $T_{c}$  = 350 and 400 °C (Table 1 in the main text).

Interestingly, the IMPS spectrum of the solar cell based on the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 300 °C locates only in the forth (IV) quadrant but not entering into III quadrant of complex plane. The measured IMPS shape of the solar cell with  $T_c = 300$  °C is significantly different from those with  $T_c = 350$  and 400 °C (Figure 7b in the main text) that appear dominantly in the IV quadrant of complex plane and entering into the third (III) quadrant of complex plane in high frequency regimes. The appearance of IMPS only in the IV quadrant (Figure S9b) indicates no photogenerated hole contribution to photocurrent in devices with  $T_c = 300$  °C. Clearly, beside the difference in crystallinity and morphology in the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs crystallized at 300 °C is also different from those in the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub>-BHJs devices with  $T_c = 350$  and 400 °C.

The shape of IMPS response of the solar cell with  $T_c = 300$  °C is similar to those in the excitonic HPSCs, in which almost no photogenerated hole contribution to photocurrent exists and the lag time of charge generation behind excitation are not ignorable.<sup>11,12</sup> As indicated from the shape of IMPS response, we believe that the solar cell with  $T_c = 300$  °C still takes the excitonic mechanism, with the excitons therein needing to diffuse to the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub> interface for dissociation rather than dissociate in the bulk Sb<sub>2</sub>S<sub>3</sub> layer, which is similar to the cases of HPSCs<sup>11,12</sup> and PbSe/TiO<sub>2</sub> solar cells,<sup>13,14</sup> because the binding energy of the excitons in amorphous Sb<sub>2</sub>S<sub>3</sub><sup>15-17</sup> and in nanosized Sb<sub>2</sub>S<sub>3</sub><sup>18</sup> should be much higher due to the structural disorders than in crystalline state.

Reasonably, the solar cell with  $T_c = 300$  °C involves the excitonic mechanism, with the exciton diffusion in Sb<sub>2</sub>S<sub>3</sub> layer toward Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2</sub> interface for dissociation and no evident hole contribution to phototcurrent generation due to the very serious hole trapping by the defect states in nanostructured Sb<sub>2</sub>S<sub>3</sub> layer; however, the exciton biding energy in the bulk crystalline Sb<sub>2</sub>S<sub>3</sub> is very low (< 10 meV),<sup>19</sup> the solar cells with  $T_c = 350$  and 400 °C take a non-excitonic mechanism in which the excitons dissociate in the bulk Sb<sub>2</sub>S<sub>3</sub> layer with a remarkable hole contribution to photocurrent generation because of the formation of crystallized and continuous Sb<sub>2</sub>S<sub>3</sub> layers.<sup>20</sup>

## References

- (1) Yue, W.; Wu, F.; Liu, C.; Qiu, Z.; Cui, Q.; Zhang, H.; Gao, F.; Shen, W.; Qiao, Q.; Wang, M. Incorporating CuInS<sub>2</sub> Quantum Dots into Polymer/Oxide-Nanoarray System for Efficient Hybrid Solar Cells. *Sol. Energy Mater. Sol. Cells* **2013**, 114, 43–53.
- (2) Gui, E. L.; Kang, A. M.; Pramana, S. S.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Effect of TiO<sub>2</sub> Mesoporous Layer and Surface Treatments in Determining Efficiencies in Antimony Sulfide-(Sb<sub>2</sub>S<sub>3</sub>) Sensitized Solar Cells. *J. Electrochem. Soc.* **2012**, *159*, B247–B250.
- (3) Choi, Y. C.; Lee, D. U.; Noh, J. H.; Kim, E. K.; Seok, S. I. Highly Improved Sb<sub>2</sub>S<sub>3</sub> Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. *Adv. Funct. Mater.* 2014, 24, 3587–3592.
- (4) Maiti, N.; Im, S. H.; Lim, C.-S.; Seok, S. I. A Chemical Precursor for Depositing Sb<sub>2</sub>S<sub>3</sub> on to Mesoporous TiO<sub>2</sub> Layers in Nonaqueous Media and Its Application to Solar Cells. *Dalton Trans.* 2012, *41*, 11569–11572.
- (5) Chuang, C.-H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. *Nature Mater.* 2014, 13, 796–801.

- (6) Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H.; Chen, S.; Zhong, J.; Lv, L.; Niu, D.; Tang, J. CuSbS<sub>2</sub> as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study. *Chem. Mater.* **2014**, *26*, 3135–3143.
- (7) Boix, P. P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Seró, I.; Bisquert, J. Hole Transport and Recombination in All-Solid Sb<sub>2</sub>S<sub>3</sub>-Sensitized TiO<sub>2</sub> Solar Cells Using CuSCN As Hole Transporter. J. Phys. Chem. C 2012,116, 1579–1587.
- (8) Christians, J. A.; Kamat, P. V. Trap and Transfer. Two-Step Hole Injection Across the Sb<sub>2</sub>S<sub>3</sub>/CuSCN Interface in Solid-State Solar Cells. ACS Nano 2013, 7, 7967–7974.
- (9) Christians, J. A.; Leighton, D. T., Jr.; Kamat, P. V. Rate limiting interfacial hole transfer in Sb<sub>2</sub>S<sub>3</sub> solid state solar cells. *Energy Environ. Sci.* 2014, 7, 1148–1158.
- (10) Ai, G.; Sun, W.; Gao, X.; Zhang, Y.; Peng, L.-M. Hybrid CdSe/TiO<sub>2</sub> nanowire photoelectrodes: Fabrication and photoelectric Performance. J. Mater. Chem. 2011, 21, 8749–8755.
- (11) Chen, C.; Wang, M.; Wang, K. Characterization of Polymer/TiO<sub>2</sub> Photovoltaic Cells by Intensity Modulated Photocurrent Spectroscopy. J. Phys. Chem. C 2009, 113, 1624–1631.
- (12) Wu, F.; Shen, W.; Cui, Q.; Bi, D.; Yue, W.; Qu, Q.; Wang, M. Dynamic Characterization of Hybrid Solar Cells Based on Polymer and Aligned ZnO Nanorods by Intensity Modulated Photocurrent Spectroscopy. J. Phys. Chem. C 2010, 114, 20225–20235.
- (13) Choi, J. J; Lim, Y; Santiago-Berrios, M. B; Oh, M; Hyun, B; Sun, L; Bartnik, A. C; Goedhart, A; Malliaras, G. G; Abruña, H. D; Wise, F. W; Hanrath, T. PbSe Nanocrystal Excitonic Solar Cells. *Nano Lett.* 2009, *9*, 3749–3755.
- (14) Leschkies, K. S.; Beatty, T. J.; Kang, M. S.; Norris, D. J.; Aydil, E. S. Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films. ACS Nano 2009, 3, 3638–3648.
- (15) Evangelisti, F.; Patella, F.; Riedel, R. A.; Margaritondo, G.; Fiorini, P.; Perfetti, P.; Quaresima, C. Core Excitons in Amorphous Semiconductors. *Phys. Rev. Lett.* **1984**, *53*, 2504–2507.
- (16) Gutiérrez, A.; López, M. F. First Experimental Evidence of a C-1s Core Exciton in Amorphous Carbon Films. *Europhys. Lett.* **1995**, *31*, 299–303.
- (17) Chang, Y. K.; Hsieh, H. H.; Pong, W. F.; Tsai, M.-H.; Dann, T. E.; Chien, F. Z.; Tseng, P. K.; Chen, L. C.; Wei, S. L.; Chen, K. H.; Wu, J.-J.; Chen, Y. F. X-ray absorption of Si–C–N thin films: A comparison between crystalline and amorphous phases. *J. Appl. Phys.* **1999**, **86**, 5609–5613.
- (18) Brus, L. E. Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80, 4403–4409.
- (19) Liu, C. P.; Chen, Z. H.; Wang, H. E.; Jha, S. K.; Zhang, W. J.; Bello, I.; Zapien, J. A. Enhanced Performance by Incorporation of Zinc Oxide Nanowire Array for Organic-Inorganic Hybrid Solar Cells. *Appl. Phys. Lett.* 2012, *100*, 243102.
- (20) Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Electro-Optics of Perovskite Solar Cells. *Nat. Photonics* 2015, 9, 106–112.