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EQUATION OF MOTION

In this section, we describe the equation of mo-
tion (EOM) method for the non-equilibrium Green’s
function[1]. The formalism provides a tool to calculate
the transport properties of strongly-correlated multiple
quantum dots (MQD) system in the Coulomb blockade
regime. [2–7] The electron degrees of freedom within the
MQD is treated exactly by the full many-body EOM,
while the tunnelling effect to the metallic electrodes is
included as the electron self-energy.

We consider an N quantum dot (QD) system (one level
for each QD) with electron hopping and Coulomb inter-
actions. This MQD system is weakly coupled to some
metallic electrodes. The model Hamiltonian is

H = HQD + HT + Helectrodes (1)

HQD =

N∑
ij=1

tijd
†
idj +

N∑
i<j=1

Uijninj (2)

HT =
∑
ik

(Vkic
†
kdi + h.c.) (3)

Helectrodes=
∑
k

ϵkc
†
kck , (4)

where tij denotes the electron hopping, and Uij denotes
the electron Coulomb interaction (which is real symmet-

ric with zero diagonal elements), d†j and dj are the cre-
ation and the annihilation operators for the electron at
QD j, and nj = d†jdj . The indices i, j labels all the dis-
crete quantum numbers for the electrons in the MQD,
including the spin. c†k and ck are the creation and the
annihilation operators for the electrons in the electrodes.
The variable k labels all the quantum numbers for the
electrons in the reservoirs including the momentum, the
spin and the label for the reservoirs. We can derive the
equation of motion which describes the full many-body
degrees of freedom of electrons within the quantum dots.
The reservoirs are taken into account by including the
self-energy term. This approach is valid above the Kondo
temperature.[2–7] For the contour-ordered double-time
n-particle Green’s function[1, 8]

G
(n)
i1i2...i2n

(t, t′) (5)

= −i⟨T [d†i1(t)...d†in−1
(t)din(t)...di2n−1(t)d†i2n(t′)]⟩,

the EOM is

i∂tG
(n)
i1...i2n

(t, t′) = δ(t− t′)
2n−1∑
µ=n

(−1)(µ+1)δiµ,i2n (6)

×⟨d†i1 ...d
†
in−1

din ...diµ−1diµ+1 ...di2n−1⟩

+(−
n−1∑
µ=1

∑
j

t̄iµj +
2n−1∑
µ=n

∑
j

tiµj)G
(n)
i1...iµ−1jiµ+1...i2n−1i2n

(t, t′)

+(−
n−1∑
µ=1

n−1∑
ν=µ+1

Uiµiν +

2n−1∑
µ=n

µ−1∑
ν=n

Uiµiν )G
(n)
i1...i2n

(t, t′)

+(−
n−1∑
µ=1

+
2n−1∑
µ=n

)
∑
j

UiµjG
(n+1)
i1...in−1jjin...i2n−1i2n

(t, t′)

+

∫
dτ [−

n−1∑
µ=1
iµ∈I′

Σ̄iµiµ(t, τ) +

2n−1∑
µ=n
iµ∈I

Σiµiµ(t, τ)]G
(n)
i1...i2n

(τ, t′),

where the symbol “Ā” denotes “taking the complex con-
jugate” of A. For n = 1 the contact term should be
defined as δi1i2δ(t − t′). I and I ′ are some extra selec-
tion rules we may impose according to the phenomenol-
ogy. The detail of these selection rules is discussed in the
last section. The hierarchy of equations terminates at
n = N since G(N+1) = 0. Taking the Fourier transform
and analytic continuation[1] leads to a set of linear equa-
tions for the retarded and the lessor Green’s functions
G

(n)r
i1i2...i2n

and G
(n)<
i1i2...i2n

in the frequency domain. These
equations can be viewed as a generalization of the Dyson
equation and the Keldysh equation[1] to the n-particle
Green’s function. They can be solved by any standard
linear solver. In equilibrium, it can be shown that the
equation for the lessor Green’s function reduces to the
fluctuation-dissipation theorem

G
(n)<
i1...i2n

(ϵ) = −2if(ϵ)ℑ[G
(n)r
i1...i2n

(ϵ)] , (7)

where ℑ stands for taking the imaginary part. The self-
consistent calculation is closed by the integral relation

⟨d†i1 ...d
†
in
din+1 ...di2n⟩ =

∫
dϵ

2πi
G

(n)<
i2...i2ni1

(ϵ) . (8)

We are interested in the solution at the wide-band
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limit,[9]

Σr
jj(ϵ)= −i

∑
α

Γα
j

2
(9)

Σ<
jj(ϵ)= i

∑
α

Γα
j fα(ϵ) , (10)

where α is the label for the reservoirs, Γα
j is the tunnelling

rate between the reservoir α and the level j, and fα is
the Fermi function for the reservoir α. After solving for
the Green’s function, we can obtain the non-equilibrium
steady-state current flowing from the reservoir α into the
QD system by the Meir-Wingreen formula [10]

Jα (11)

=
ie

h

∫
dϵ

∑
j

Γα
j [G

(1)<
jj (ϵ) + fα(ϵ)(G

(1)r
jj (ϵ) −G

(1)a
jj (ϵ))].

DOUBLE QUANTUM DOTS

To examine our full numerical solution, we consider the
double quantum dot (DQD) case with EL = ER = EF +
30Γ0 − ∆go (∆go > 0). The strong coupling condition
with tLR = 16Γ0 and ULR = 25Γ0 are adopted in order
to make comparison with Ref. [3]. Figure S1(a) shows the
electrical conductance(Ge) as a function of gate voltage
(∆go) applied to both QDs at kBT = 0 and kBT = 1Γ0.

The curve at zero temperature is shown only for
comparison purpose, although it is below the Kondo
temperature.[11, 12] There are twelve distinct peaks in
the Ge spectrum, which can be identified by finding the
enigenvalues of the Hubbard Hamiltonian HQDs in con-
figurations with various occupation numbers.[13] The po-
sitions of peaks are related to the difference of eigenvalues
of the (n+1)-particle and n-particle states in various con-
figurations. The peaks with appreciable strength occur
at:
ϵ1 = EL − tLR,
ϵ2 = EL − tLR + U0+ULR

2 − 1
2

√
(U0 − ULR)2 + 16t2LR,

ϵ3 = EL + ULR − tLR, ϵ4 = EL + tLR,
ϵ5 = EL + tLR + U0+ULR

2 − 1
2

√
(U0 − ULR)2 + 16t2LR,

ϵ6 = EL + ULR + tLR, ϵ7 = EL + U0 + ULR − tLR,
ϵ8 = EL − tLR + U0+3ULR

2 + 1
2

√
(U0 − ULR)2 + 16t2LR,

ϵ9 = EL +U0 + 2ULR − tLR, ϵ10 = EL +U0 +ULR + tLR,
ϵ11 = EL + tLR + U0+3ULR

2 + 1
2

√
(U0 − ULR)2 + 16t2LR,

ϵ12 = EL + U0 + 2ULR + tLR.
The magnitude of Ge is smaller than the quantum con-
ductance 2e2/h for tLR/Γ ≫ 1 as a result of electron
Coulomb interactions.[3] The mechanism for understand-
ing the unusual Ge behavior in nanostructure junction
systems is a subject of high interest.[14] Due to electron
Coulomb interactions, the magnitudes of peaks are re-
lated to the probability weights of quantum paths, which
are related to single-particle occupation numbers and
many-particle correlation functions.[6] At kBT = 1Γ0,

the peaks in Ge are suppressed and broadened. [See
dashed curve in Fig. S1(a)]

Figure S1(b) shows the one-particle occupation num-
ber Nℓ,σ ≡ ⟨nℓ,σ⟩, intradot two-particle correlation func-
tion ⟨nℓ,σ̄nℓ,σ⟩, interdot correlation function ⟨nℓ,σ̄nj,σ⟩,
and three-particle correlation function ⟨nℓ,σ̄nj,σ̄nj,σ⟩ as
functions of ∆go at kBT = 0. The one-particle occu-
pation number (black solid line) exhibits four plateaus
with values 1/4, 1/2, 3/4, and 1, corresponding to one-
, two-, three- and four-particle configurations. At zero
temperature and Γ → 0, Nℓ will be a stair-case function,
which becomes broadened as a result of the coupling be-
tween dots and electrodes. The first peak height can
be evaluated approximately by the probability weight
1 − NL,σ̄ − NR,σ̄ − NR,σ + ⟨nL,σ̄nR,σ̄⟩ + ⟨nL,σ̄nR,σ⟩ +
⟨nR,σ̄nR,σ⟩ − ⟨nL,σ̄nR,σ̄nR,σ⟩. Due to symmetry of the
system, we have NL,σ̄ = NR,σ̄, ⟨nL,σ̄nL,σ⟩ = ⟨nR,σ̄nR,σ⟩,
and so on. At ∆go = ϵ1, we have NL = NR = 0.125
and Ge ≈ 0.625 in units of quantum conductance 2e2/h,
which is close to the anomalous value 0.7 reported in Ref.
[14]. The magnitudes of other Ge peaks can also be ana-
lyzed by their probability weights. For example, the peak
labeled by ϵ12 is approximately ⟨nLσ̄nRσ̄nRσ⟩. Compar-
ing Fig. S1(a) with Fig. S1(b), we see that the four main
peaks labeled by ϵ1, ϵ5, ϵ8 and ϵ12 occur at ∆go where Nℓ

makes a jump. The ϵ5 peak corresponds to the transition
form one-particle state to two-particle state in a spin-
singlet configuration, which is evidenced by the quick in-
crease of the correlation function ⟨nL,σnR,σ̄⟩, while ϵ6
peak is related to a significant decrease in ⟨nL,σnR,σ̄⟩,
indicating a change of the two-particle state form spin
singlet to a partial mixture of spin triplet. We noticed
that the Ge spectrum for ∆g > 115Γ0 is a mirror image
of that for ∆g < 115Γ0 due to the electron-hole symme-
try. Thus, physical mechanisms for the ϵ7-ϵ12 peaks can
be interpreted in terms of mechanisms for the ϵ1-ϵ6 peaks
by using the hole picture. It is worth noting that the re-
sults shown in Fig. S1 are identical to those of Ref [3],
which confirms the validity of the procedures of our full
numerical calculation.

COMPUTATIONAL COST

We compare the computational effort of our Green’s
function approach to the rate equation approach. In the
rate equation, the quantity to be solved is the density ma-
trix of the size 2N ×2N = 4N , which grows exponentially.
In our Green’s function approach, the number of corre-

lators to be solved is
∑N

n=1

(
N
n

)(
N
n

)
=

(
2N
N

)
− 1 → 4N√

πN
,

which grows sub-exponentially. However, to get these
correlators, the number of Green’s functions to be solved
is

∑N
n=1

(
N

n−1

)(
N
n

)
N , which grows super-exponentially.

For the triple QD system (N = 6), we need to solve
for 4752 Green’s functions to get 923 correlators, while
the number of the density matrix elements is 4096.
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SELF-ENERGY TERM

The non-equilibrium tunnelling is treated by the
Bu lka-Kostyrko ansatz.[3] The recipe provides a good
lowest order approximation to the transport physics in
the Coulomb blockade regime. [2–7] In this section, we
give a derivation[15–17] which makes the Bu lka-Kostyrko
ansatz plausible. The higher order effect may be in-
cluded by employing more complicated self-energy term.
[16, 18–20]

For the Hamiltonian of Eq. (1), the EOM is

i∂tG
(n)
i1...i2n

=(equilibrium term) + (self-energy term),
where the equilibrium term is generated by HQD and the
self-energy term is generated by HT + Helectrodes. The
equilibrium term can be derived straight forwardly, so we
focus on the self-energy term here. The derivatives of the
operators of the electrons in the reservoirs are

i∂tck(t)= ϵkck(t) +
∑
j

Vkjdj(t) (12)

i∂tc
†
k(t)= −ϵkc

†
k(t) +

∑
j

−V̄kjd
†
j(t) . (13)

Integrate these equations to get

ck(t)=
∑
j

Vkj

∫
dτgk(t, τ)dj(τ) (14)

c†k(t)=
∑
j

V̄kj

∫
dτ ḡk(t, τ)d†j(τ) , (15)

where gk(t, t′) = (i∂t−ϵk)−1 and ḡk(t, t′) = (−i∂t−ϵk)−1.

Consider the derivatives of the operators of the elec-
trons in the QDs, the contribution of HT + Helectrodes

is

i∂tdj(t)=
∑
k

V̄kjck(t) (16)

i∂td
†
j(t)=

∑
k

−Vkjc
†
k(t) . (17)

Now we can eliminate the electrodes degrees of free-
dom,

i∂tdj(t)=

∫
dτ

∑
kl

V̄kjVklgk(t, τ)dl(τ) (18)

=

∫
dτ

∑
l

Σjl(t, τ)dl(τ) (19)

i∂td
†
j(t)= −

∫
dτ

∑
kj

Vkj V̄klḡk(t, τ)d†l (τ) (20)

= −
∫

dτ
∑
l

Σ̄jl(t, τ)d†l (τ) . (21)

If we take the Markov approximation[17] and consider
only the diagonal tunnelling matrix elements, then we

have

i∂t(d
†
i1
...d†in−1

din ...di2n−1(t)) (22)

=

∫
dτ{[−

n−1∑
µ=1

Σ̄iµiµ(t, τ) +
2n−1∑
µ=n

Σiµiµ(t, τ)]

×[d†i1 ...d
†
in−1

din ...di2n−1(τ)]},

and hence we get the final result,

self-energy term (23)

=

∫
dτ [−

n−1∑
µ=1

Σ̄iµiµ(t, τ) +
2n−1∑
µ=n

Σiµiµ(t, τ)]G
(n)
i1...i2n

(τ, t′).

The self-energy term is quite general, but it contains
many extra terms comparing to the previous works. [2–7]
Numerical experiments also show that these terms break
the particle-hole symmetry. This is due to the larger
broadening appears in the higher particle Green’s func-
tions, which comes from the extra terms. This fact is
easy to see from the expression.

The remedy is to employ some phenomenological ar-
guments to drop certain self-energy terms. The selection
rules are:

1. If one creation operator d†i (t) and one annihilation
operator di(t) of the same level i appear simulta-
neously, this pair is assumed to be stationary and
the associated self-energy is dropped.

2. If the annihilation operator di(t) is of the opposite

spin with respect to the creation operator d†j(t
′),

then the associated self-energy is dropped.

3. The remaining self-energy associated with the cre-
ation operator d†i (t) is dropped.

With these restrictions, the self-energy term above be-
comes the Bu lka-Kostyrko ansatz:

self-energy term (24)

=

∫
dτ

∑
iµ∈IBK

Σiµiµ(t, τ)G
(n)
i1...i2n

(τ, t′),

where

IBK = {iµ|n ≤ µ ≤ 2n− 1, spin(iµ) ̸= spin(i2n)}(25)

\{iµ|1 ≤ µ ≤ n− 1}.

This is the formula used in practical simulations.
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