First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

Vladimir Tripkovic^{1,2,3*}, Heine Anton Hansen¹, Jan Rossmeisl^{2,3}, Tejs Vegge¹

¹Department of Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark

²Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

³Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Note 1: Linear scaling relationships

Figure S1 shows the OOH vs. OH and O vs OH linear scaling relations for the binary and ternary thin films. For comparison we also denote the linear scaling relations between the OOH and OH calculated for metals in ref. 1. As seen, there is a small difference in the slopes and intercepts between the thin film and metal data. The energy differences cancel to a large extent after adding a water stabilization effect, which is necessary for getting the free energy differences that can be related to the activities. In ref. 1 this effect is found to be approximately 0.30 eV for OOH, whereas in this work it is calculated to be 0.16 eV for OOH on Pt(111) and 0.22 eV for OOH on Pd(111). The difference in the water stabilization effect in the two studies is probably due to different DFT codes (presumably pseudopotentials) employed for calculating the binding energies.

It is also noteworthy that the O vs. OH scaling relations for Au containing thin films form different subsets. Every subset is for a fixed concentration of Au in the surface layer. A high change in the O binding energy between different subsets is because Au is not an oxophilic element, thus when oxygen adsorbs e.g. in a face-centered-cubic (fcc) site between one Au and two Pt atoms, the O lies in the position that is in between the fcc and a bridge site between the two platinum atoms. This causes jumps in the oxygen binding energy. Nevertheless, the large change in the oxygen binding energy does not affect the potential determining step because the reduction of OOH to O is the most exergonic step in the free energy path. Even, if the oxygen binding energy was 3 eV, the OOH reduction step would still be downhill in free energy by more than 1 eV.

Figure 1 Linear scaling relations OOH vs. OH (a and b) and O vs. OH (c and d) for the binary (a and c) and ternary thin films (b and d).

Note 2: Convergence with respect to the slab thickness

The convergence with respect to the number of layers for Pt(111), and selected binary (111) catalysts is shown in Table S1. As can be seen the relative differences depend on the slab thickness as well as on the thin film composition. In particular, the OH binding energy on Pt(111) is changing significantly between the odd and even number of layers. We choose an even number of layers (4) because the Pt(111) skin on Au(111) has been experimentally shown to be slightly less active than Pt(111), whereas the Pt(111) skin on Pt(111) is slightly more active than Pt(111).²

Table S1: OH binding energies on selected catalysts. Values are in eVs.

Number of	Pt	Pt ₃ /Au ₃ /Pt	Pt ₃ /Pd ₃ /Pd
slab layers			
3	0.88	1.02	0.96
4	1.03	1.00	1.07
5	0.91	0.99	1.03
6	0.98	1.03	-

Note 3: Values for the activity and stability descriptors

Thin film	OH binding	Surface	Thin film	OH binding	Surface
	energy /e v	eV/Atom		chergy /e v	eV/Atom
PtPd thin films (Pt-host)			PtPd thin films (Pd-host)		
Pt ₃ /Pt ₃ /Pt	1.030	0.530	Pt ₃ /Pt ₃ /Pd	1.011	0.486
Pt ₂ Pd/Pt ₃ /Pt	0.906	0.515	Pt ₂ Pd/Pt ₃ /Pd	0.887	0.472
PtPd ₂ /Pt ₃ /Pt	0.769	0.498	PtPd ₂ /Pt ₃ /Pd	0.748	0.447
Pd ₃ /Pt ₃ /Pt	0.791	0.474	Pd ₃ /Pt ₃ /Pd	0.812	0.426
Pt ₃ /Pt ₂ Pd/Pt	1.043	0.495	Pt ₃ /Pt ₂ Pd/Pd	1.034	0.471
Pt ₂ Pd/Pt ₂ Pd/Pt	0.947	0.487	Pt ₂ Pd/Pt ₂ Pd/Pd	0.921	0.464
PtPd ₂ /Pt ₂ Pd/Pt	0.816	0.477	PtPd ₂ /Pt ₂ Pd/Pd	0.780	0.448
Pd ₃ /Pt ₂ Pd/Pt	0.851	0.461	Pd ₃ /Pt ₂ Pd/Pd	0.779	0.436
Pt ₃ /PtPd ₂ /Pt	1.080	0.466	Pt ₃ /PtPd ₂ /Pd	1.057	0.452
Pt ₂ Pd/PtPd ₂ /Pt	0.980	0.466	Pt ₂ Pd/PtPd ₂ /Pd	0.944	0.454
PtPd ₂ /PtPd ₂ /Pt	0.864	0.462	PtPd ₂ /PtPd ₂ /Pd	0.815	0.455
Pd ₃ /PtPd ₂ /Pt	0.934	0.451	Pd ₃ /PtPd ₂ /Pd	0.828	0.451
Pt ₃ /Pd ₃ /Pt	1.108	0.447	Pt ₃ /Pd ₃ /Pd	1.072	0.448
Pt ₂ Pd/Pd ₃ /Pt	1.001	0.452	Pt ₂ Pd/Pd ₃ /Pd	0.956	0.459
PtPd ₂ /Pd ₃ /Pt	0.869	0.454	PtPd ₂ /Pd ₃ /Pd	0.821	0.466
Pd ₃ /Pd ₃ /Pt	0.903	0.451	Pd ₃ /Pd ₃ /Pd	0.888	0.469
PtAu	thin films (Pt-ho	ost)	PdAu thin films (Pd-host)		
Pt ₃ /Pt ₃ /Pt	1.030	0.530	Pd ₃ /Pd ₃ /Pd	0.889	0.478
Pt ₂ Au/Pt ₃ /Pt	1.006	0.469	Pd ₂ Au/Pd ₃ /Pd	1.102	0.310
PtAu ₂ /Pt ₃ /Pt	0.993	0.375	PdAu ₂ /Pd ₃ /Pd	1.322	0.178
Au ₃ /Pt ₃ /Pt	1.582	0.272	Au ₃ /Pd ₃ /Pd	1.662	0.117
Pt ₃ /Pt ₂ Au/Pt	1.071	0.616	Pd ₃ /Pd ₂ Au/Pd	0.913	0.425
Pt ₂ Au/Pt ₂ Au/Pt	1.058	0.535	Pd ₂ Au/Pd ₂ Au/Pd	1.124	0.257
PtAu ₂ /Pt ₂ Au/Pt	1.010	0.419	PdAu ₂ /Pd ₂ Au/Pd	1.338	0.125
Au ₃ /Pt ₂ Au/Pt	1.481	0.315	Au ₃ /Pd ₂ Au/Pd	1.624	0.080
Pt ₃ /PtAu ₂ /Pt	1.123	0.634	Pd ₃ /PdAu ₂ /Pd	0.920	0.387
Pt ₂ Au/PtAu ₂ /Pt	1.090	0.544	Pd ₂ Au/PdAu ₂ /Pd	1.173	0.220
PtAu ₂ /PtAu ₂ /Pt	1.070	0.414	PdAu ₂ /PdAu ₂ /Pd	1.334	0.090
Au ₃ /PtAu ₂ /Pt	1.534	0.317	Au ₃ /PdAu ₂ /Pd	1.598	0.082
Pt ₃ /Au ₃ /Pt	1.170	0.604	Pd ₃ /Au ₃ /Pd	1.140	0.384
Pt ₂ Au/Au ₃ /Pt	1.143	0.505	Pd ₂ Au/Au ₃ /Pd	1.224	0.230
PtAu ₂ /Au ₃ /Pt	1.091	0.382	PdAu ₂ /Au ₃ /Pd	1.346	0.133
Au ₃ /Au ₃ /Pt	1.627	0.278	Au ₃ /Au ₃ /Pd	1.603	0.139

Table 2 Binary thin films. Formulations more active than Pt are colored in red.

Table 3 Ternary thin films.¹ Formulations more active than Pt are colored in red.

Thin film	OH binding	Surface energy	Thin film	OH binding	Surface energy
pure skin	energy /eV	eV/Atom	mixed skin	energy /eV	eV/Atom
Pure metal skins (Pt-host)			Mixed metal skins (Pt-host)		
Pd ₃ /Pt ₃ /Pt	0.793	0.474	PtPd ₂ /Au ₃ /Pt	0.919	0.549
Pd ₂ Au/Pt ₃ /Pt	1.037	0.366	Pt ₂ Pd/Au ₃ /Pt	1.056	0.581
PdAu ₂ /Pt ₃ /Pt	1.269	0.288	PtPd ₂ /PtAu ₂ /Pt	0.856	0.586
Au ₃ /Pt ₃ /Pt	1.582	0.272	Pt ₂ Pd/PtAu ₂ /Pt	0.998	0.613
Pt ₃ /Pd ₃ /Pt	1.108	0.447	PtPd ₂ /Pt ₂ Au/Pt	0.770	0.573
Pt ₃ /Pd ₂ Au/Pt	1.121	0.483	Pt ₂ Pd/Pt ₂ Au/Pt	0.919	0.597
Pt ₃ /PdAu ₂ /Pt	1.149	0.526	PtPd ₂ /PdAu ₂ /Pt	0.891	0.495
Pt ₃ /Au ₃ /Pt	1.170	0.604	Pt ₂ Pd/PdAu ₂ /Pt	1.033	0.514
Pd ₃ /Pt/Pt	0.791	0.474	PtPd ₂ /Pd ₂ Au/Pt	0.867	0.471
Pd ₃ /Pt ₂ Au/Pt	0.877	0.540	Pt ₂ Pd/Pd ₂ Au/Pt	1.004	0.480
Pd ₃ /PtAu ₂ /Pt	0.962	0.546	PtPd ₂ /Au ₃ /Pt	0.919	0.549
Pd ₃ /Au ₃ /Pt	0.961	0.502	Pt ₂ Pd/Au ₃ /Pt	1.056	0.581
Pure metal skins (Pd-host)			Mixed metal skins (Pd-host)		
Pt ₃ /Pd ₃ /Pd	1.072	0.457	PtPd ₂ /Au ₃ /Pd	0.920	0.430
Pt ₂ Au/Pd ₃ /Pd	1.086	0.375	Pt ₂ Pd/Au ₃ /Pd	1.066	0.459
PtAu ₂ /Pd ₃ /Pd	1.077	0.257	PtPd ₂ /PtAu ₂ /Pd	0.825	0.502
Au ₃ /Pd ₃ /Pd	1.662	0.117	Pt ₂ Pd/PtAu ₂ /Pd	0.950	0.529
Pd ₃ /Pt ₃ /Pd	0.812	0.434	PtPd ₂ /Pt ₂ Au/Pd	0.773	0.513
Pd ₃ /Pt ₂ Au/Pd	0.895	0.483	Pt ₂ Pd/Pt ₂ Au/Pd	0.910	0.536
Pd ₃ /PtAu ₂ /Pd	0.985	0.464	PtPd ₂ /PdAu ₂ /Pd	0.862	0.418
Pd ₃ /Au ₃ /Pd	1.140	0.384	Pt ₂ Pd/PdAu ₂ /Pd	1.002	0.436
Pt ₃ /Pd ₃ /Pd	1.072	0.457	PtPd ₂ /Pd ₂ Au/Pd	0.841	0.440
Pt ₃ /Pd ₂ Au/Pd	1.088	0.448	Pt ₂ Pd/Pd ₂ Au/Pd	0.973	0.446
Pt ₃ /PdAu ₂ /Pd	1.175	0.432	PtPd ₂ /Au ₃ /Pd	0.920	0.430
Pt ₃ /Au ₃ /Pd	1.176	0.480	Pt ₂ Pd/Au ₃ /Pd	1.066	0.459

- (1) Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Chem. Phys. 2005, 319, 178–184.
- (2) Nilekar, A. U.; Xu, Y.; Zhang, J.; Vukmirovic, M. B.; Sasaki, K.; Adzic, R. R.; Mavrikakis, M. *Top. Catal.* **2007**, *46*, 276–284.

¹ For completeness of data Table 3 contains also some binary thin films from Table 2.