Supporting Information for

Electronic, optical and magnetic consequences of delocalization in multifunctional donor-acceptor organic polymers

Felix J. Rizzuto,^a Carol Hua,^a Bun Chan,^{a,c} Thomas B. Faust,^a Aditya Rawal,^b Chanel F. Leong,^a James M. Hook,^b Cameron J. Kepert^a and Deanna M. D'Alessandro,^{a*}

^a School of Chemistry, The University of Sydney, New South Wales 2006, Australia.

^b NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Australia.

^cARC Centre of Excellence for Radical Chemistry and Biotechnology, School of Chemistry, The University of Sydney, New South Wales 2006, Australia.

Figure S1. TGA of 1 and 2 over the temperature range 25 to 700 °C.

Figure S2. Infrared spectra of 1 and 2 over the range 4000-500 cm⁻¹.

Figure S3. ¹³C CP non-quaternary suppression (NQS) spectra of 1 and 2 at 75 MHz with 8 kHz MAS.

Figure S4. N_2 isotherm at 77 K for 1 and 2.

Figure S5. Pore size distribution of 1.

Figure S6. Solid state cyclic voltammograms of **1** with scan rates of 50, 100 and 150 mV s⁻¹ in [(n-C₄H₉)₄N]PF₆/MeCN. Notable is that, at 100 mV s⁻¹, the oxidation process splits into two peaks. The arrow indicates the direction of the forward scan.

Figure S7. Tauc plot derived from the solid state UV-vis-NIR spectrum of **1** showing the estimation of the optical band gap (the intersection of the dashed line with the *x*-axis).

Figure S8. Tauc plot derived from the solid state UV-vis-NIR spectrum of **2** showing the estimation of the optical band gap(the intersection of the dashed line with the *x*-axis).

Figure S9. Solid state spectroelectrochemistry conducted on 1 in 0.1 M $[(n-C_4H_9)_4N]PF_6/MeCN$, during reduction (0 to -2.0 V). Arrows show the direction of spectral progression.

Figure S10. Solid state spectroelectrochemistry conducted on **2** in 0.1 M [(*n*-C₄H₉)₄N]PF₆/MeCN, during reduction (0 to -2.0 V). Arrows show the direction of spectral progression.

Figure S11. Formula unit of 1 (shown in cyan), used for stoichiometric redox agent additions and magnetic calculations. The polymer is extended to show the predicted connectivity.

Figure S12. Formula unit of 2 (shown in cyan), used for stoichiometric redox agent additions and magnetic calculations. The polymer is extended to show the predicted connectivity.