Radical-Induced, Proton-Transfer-Driven Fragmentations in $[b_5 - H]^{\bullet+}$ Ions Derived from Pentaalanyl Tryptophan

Declan Williams,^a Justin Kai-Chi Lau,^{a,b} Junfang Zhao,^a Stefanie Mädler,^a Yating Wang,^a Irine S. Saminathan,^a Alan C. Hopkinson,^a K.W. Michael Siu^{a,b} *

^aDepartment of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

^bDepartment of Chemistry and Biochemistry, Windsor University, 401 Sunset Avenue, Windsor Ontario, Canada N9B 3P4

Supporting information

*Corresponding author

Email: kwmsiu@uwindsor.ca

Figure S1.Energy-resolved diagram of AAAWA*_{oxa}⁺⁺ where A* denotes the alanine having a CD₃ side chain. The formation of ion at m/z 240 is the dominant dissociation channel and the loss of AA_{oxa} (m/z 328) is always more abundant than the loss of only one alanine residue (m/z 399).

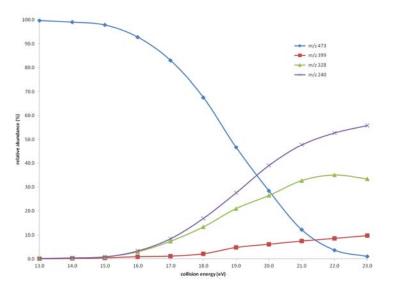
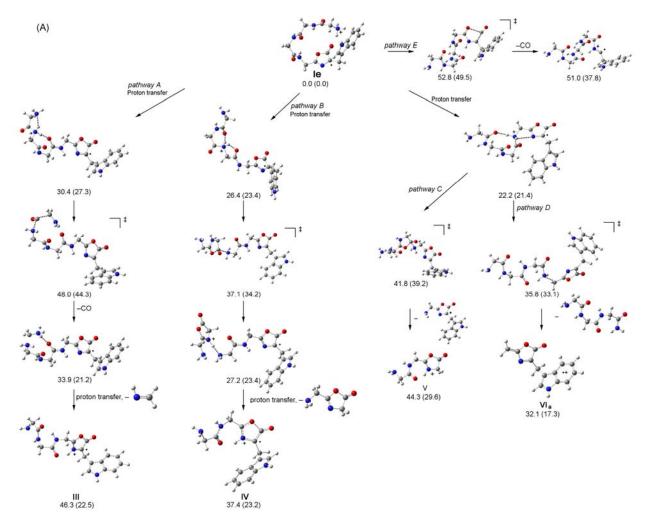
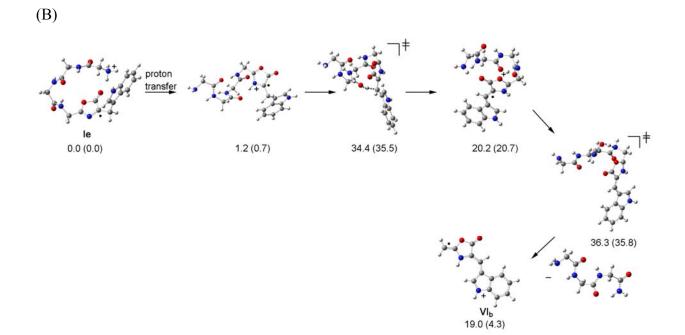




Figure S2. Mechanisms for the dissociation of $[b_5 - H]^{\bullet+}$ ion induced by the migration of a proton (A) from the nitrogen of the oxazolone ring and (B) from the β -CH₂ group of the tryptophan side chain. Enthalpies (ΔH°_{0} , kcal mol⁻¹) and free energies (ΔG°_{298} , in parenthesis) are calculated at the B3LYP/6-31++G(d,p) level. All energies are relative to the global minimum structure **Ie**.

