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Supplementary information

1. Detailed deduction of exchange energy Eex

The exchange energy Eex is denoted as the summation of magnetostatic energy 

between all magnetic moments. In the model of chain of ellipsoid-rings, we only 

consider the dominant energy of magnetic interactions, namely, magnetic interaction 

energy within each ring Eex(rings) and within each chain Eex(chains) of ellipsoids. Thus, 

the exchange energy Eex can be described as

.                         (S1)( ) ( )ex ex rings ex chainsE = E + E

In the following, we shall deduce the mathematical form of the exchange energy Eex 

in detail. 

The exchange energy Eex stems from the magnetic interaction between magnetic 

moments. The energy between two magnetic moments is

                    ,                 (S2)[( ) ( )( )]ij 3 2
ij ij

1 3E = -
r ri j i ij j ijμ μ μ r μ r

where μi and μj are two dipoles of magnetic moments and rij is vector between μi and 

μj. Thus, both Eex(rings) and Eex(chains) can be deduced from the Eq.(S2).

First, starting from the Eq.(S2), the magnetic interaction energy within each ring 

Eex(rings) can be calculated as follows:

,           (S3) 
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where each ellipsoid is treated as a dipole of magnetic moment μe and the Nr and Ne 

represent the number of rings in a nanotube and number of ellipsoids in a ring, 

respectively. As shown in the Eq.(S3), there are two items of rij and erij to be solved 

before the final mathematical form of Eex(rings) is obtained. To solve rij and erij, we 
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schematically illustrate the relation between the μe(i) and μe(j) in a ring in the Fig. S1 

according to the coordinate described in Fig. 1(c). 

(1) Calculation of rij item. As shown in Fig. S1, the azimuthal angle of μe(i) and 

μe(j) in ring plane are φi and φj, and there are i-1 ellipsoids between μe(i) and μe(j). Thus, 

the distance rij between μe(i) and μe(j) can be calculated as

.     (S4)
1
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(2) Calculation of erij item. According to the mathematical definition,

. As shown in Fig. S1, the projection of all magnetic = cos( ) e ijμ re ij e ijμ r μ ,r

moments in the ring plane (the dotted arrows in the Fig. S1) is parallel to the X-Z 

plane (the dotted line in the Fig. S1); thus, the angle between projection of μe(i) and 

rij becomes i. At the same time, the external field H 
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respectively makes the angles and θ0 with respect to the (𝛼 + 𝜃0)/( ‒ 𝛼 + 𝜃0)

magnetic moment e and tube axis direction according to the coordinate described 

in Fig.1(c), and we correspondingly show the relation among , (𝛼 + 𝜃0)/( ‒ 𝛼 + 𝜃0)

θ0 and H in the Figure S2. Thus, the angle between the magnetic moment e and 

the ring plane becomes  and the cosine of the angle of μe(i) to rij is calculated 
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Therefore, the erij can be written as:

.          
(S5)= cos( )=- sin sin( )e ij e ij j

e

μ r μ r i
N
   e ij e ijμ r μ ,r

Substituting Eq.(S4) and Eq.(S5) for Eq.(S3), the magnetic interaction energy 

within each ring Eex(rings) can be written as
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Second, the magnetic interaction energy within a chain Eex(chains) can also be 

calculated from the Eq.(S2). Considering the exchange energy Eex(chain) in a single 

chain, it is denoted as the sum of all exchange energy between the magnetic moments 

in a chain, namely, from the nearest-neighbor exchange energy to the furthest-

neighbor exchange energy. Here we set the number of rings is even. Thus, the total 

energy in a single chain can be calculated as:

, (S7) 
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Finally, by substituting Eq.(S6) and Eq.(S7) into Eq.(S1), the total exchange 

energy Eex can be described in the following mathematical form:
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Figure. S1

FIG. S1 Schematic diagram of geometric relation between μe(i) and μe(j).

Figure. S2

FIG. S2 Angles between magnetic moment μe, axis direction of nanotube, and 

external field H.
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2．Detailed calculation of coercivity in the fanning rotation and 

coherent rotation 

According to the Eq. (11) in our previous work (see the ref. [24] of this article) 

and the Eq. (9) in this article, we can easily obtain the coercivity Hc of coherent 

rotation and fanning rotation. The equations are as follows:

For the coherent rotation, 

         (S9)
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For the fanning rotation, 
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It is clearly seen that there are four coefficients of a, b, d and e in the Eq. (S9) and 

Eq. (S10); all these coefficients are function of the geometric parameters of 

nanotubes, including axis ratio k, the length of nanotube Nr, the number of 

ellipsoid in a rings Ne and the thickness of nanotube, . To simply calculate the 2𝑟𝑒

coercivity, we set Ne is equal to 50 and then study the influence of the geometric 

parameters of nanotube on the magnetic properties, especially for the coercivity 

Hc. All the calculation results are demonstrated in the Fig. 3, Fig. 4 and Fig.5. In 

addition, in order to compare the coercivity of fanning rotation with that of 

coherent rotation, we set the same values of k, Nr, and  to calculate magnetic 2𝑟𝑒

properties, as shown in the Fig. 5.


