Supplementary information

1. Detailed deduction of exchange energy $\boldsymbol{E}_{e x}$

The exchange energy $E_{e x}$ is denoted as the summation of magnetostatic energy between all magnetic moments. In the model of chain of ellipsoid-rings, we only consider the dominant energy of magnetic interactions, namely, magnetic interaction energy within each ring $E_{\text {ex(rings) }}$ and within each chain $E_{\text {ex(chains) }}$ of ellipsoids. Thus, the exchange energy $E_{e x}$ can be described as

$$
\begin{equation*}
E_{e x}=E_{e x(r i n g s)}+E_{e x(c h a i n s)} . \tag{S1}
\end{equation*}
$$

In the following, we shall deduce the mathematical form of the exchange energy $E_{e x}$ in detail.

The exchange energy $E_{e x}$ stems from the magnetic interaction between magnetic moments. The energy between two magnetic moments is

$$
\begin{equation*}
E_{i j}=\frac{1}{r_{i j}^{3}}\left[\left(\mu_{i} \boldsymbol{\mu}_{j}\right)-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{i} \boldsymbol{r}_{i j}\right)\left(\boldsymbol{\mu}_{j} r_{i j}\right)\right], \tag{S2}
\end{equation*}
$$

where $\boldsymbol{\mu}_{\boldsymbol{i}}$ and $\boldsymbol{\mu}_{\boldsymbol{j}}$ are two dipoles of magnetic moments and $\boldsymbol{r}_{\boldsymbol{i}}$ is vector between $\boldsymbol{\mu}_{\boldsymbol{i}}$ and $\boldsymbol{\mu}_{\boldsymbol{j}}$. Thus, both $E_{\text {ex(rings) }}$ and $E_{\text {ex(chains) }}$ can be deduced from the Eq.(S2).

First, starting from the Eq.(S2), the magnetic interaction energy within each ring $E_{\text {ex(rings) }}$ can be calculated as follows:

$$
\begin{align*}
E_{e x(r i n g s)} & =\frac{N_{r}}{2} \sum_{j=0}^{N_{e}-1} \sum_{i=1}^{N_{e}-1} E_{i j} \\
& =\frac{N_{r}}{2} \sum_{j=0}^{N_{e}-1} \sum_{i=1}^{N_{e}-1} \frac{1}{r_{i j}^{3}}\left[\left(\boldsymbol{\mu}_{i} \boldsymbol{\mu}_{j}\right)-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{i} r_{i j}\right)\left(\boldsymbol{\mu}_{j} r_{i j}\right)\right], \tag{S3}\\
& =\frac{N_{r}}{2} \sum_{j=0}^{N_{c}-1} \sum_{i=1}^{N_{c}-1} \frac{1}{r_{i j}^{3}}\left[\mu_{e}{ }^{2}-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{e} \boldsymbol{r}_{i j}\right)^{2}\right]
\end{align*}
$$

where each ellipsoid is treated as a dipole of magnetic moment $\boldsymbol{\mu}_{e}$ and the N_{r} and N_{e} represent the number of rings in a nanotube and number of ellipsoids in a ring, respectively. As shown in the Eq.(S3), there are two items of $\boldsymbol{r}_{i j}$ and $\mu_{e} r_{i j}$ to be solved before the final mathematical form of $E_{e x(r i n g s)}$ is obtained. To solve $\boldsymbol{r}_{i j}$ and $\mu_{e} \boldsymbol{r}_{i j}$, we
schematically illustrate the relation between the $\boldsymbol{\mu}_{e(i)}$ and $\boldsymbol{\mu}_{e(j)}$ in a ring in the Fig. S1 according to the coordinate described in Fig. 1(c).
(1) Calculation of $\boldsymbol{r}_{i j}$ item. As shown in Fig. S1, the azimuthal angle of $\boldsymbol{\mu}_{\boldsymbol{e}(\boldsymbol{i})}$ and $\boldsymbol{\mu}_{e(j)}$ in ring plane are φ_{i} and φ_{j}, and there are $i-1$ ellipsoids between $\boldsymbol{\mu}_{\boldsymbol{e}(i)}$ and $\boldsymbol{\mu}_{e(j)}$. Thus, the distance $r_{i j}$ between $\boldsymbol{\mu}_{e(i)}$ and $\boldsymbol{\mu}_{e(j)}$ can be calculated as
$r_{i j}=2\left(R-r_{e}\right)^{2}-2\left(R-r_{e}\right)^{2} \cos \left(\varphi_{i}-\varphi_{j}\right)=\left\{2\left(R-r_{e}\right)^{2}\left[1-\cos \left(2 \pi i / N_{e}\right)\right]\right\}^{\frac{1}{2}}$.
(2) Calculation of $\mu_{e} r_{i j}$ item. According to the mathematical definition, $\boldsymbol{\mu}_{e} \boldsymbol{r}_{i j}=\mu_{e} r_{i j} \cos \left(\left\langle\boldsymbol{\mu}_{e}, \boldsymbol{r}_{i j}\right\rangle\right)$. As shown in Fig. S1, the projection of all magnetic moments in the ring plane (the dotted arrows in the Fig. S1) is parallel to the X-Z plane (the dotted line in the Fig. S1); thus, the angle between projection of $\boldsymbol{\mu}_{e(i)}$ and $\boldsymbol{r}_{i j}$ becomes $\frac{\pi}{2}+\left(\frac{\varphi_{i}+\varphi_{j}}{2}\right)=\frac{\pi}{2}+\varphi_{j}+\frac{\pi}{N_{e}}$. At the same time, the external field \boldsymbol{H} respectively makes the angles $\left(\alpha+\theta_{0}\right) /\left(-\alpha+\theta_{0}\right)$ and θ_{0} with respect to the magnetic moment μ_{e} and tube axis direction according to the coordinate described in Fig.1(c), and we correspondingly show the relation among $\left(\alpha+\theta_{0}\right) /\left(-\alpha+\theta_{0}\right)$, θ_{0} and \boldsymbol{H} in the Figure S2. Thus, the angle between the magnetic moment $\boldsymbol{\mu}_{e}$ and the ring plane becomes $\frac{\pi}{2}-\alpha$ and the cosine of the angle of $\boldsymbol{\mu}_{\boldsymbol{e}(\boldsymbol{i})}$ to $\boldsymbol{r}_{i j}$ is calculated as

$$
\cos \left(<\mu_{e}, \mathrm{r}_{i j}>\right)=\cos \left[\frac{\pi}{2}-\alpha\right] \cos \left[\frac{\pi}{2}+\varphi_{j}+\frac{\pi}{N_{e}} i\right]=-\sin \alpha \sin \left(\varphi_{j}+\frac{\pi}{N_{e}} i\right)
$$

Therefore, the $\mu_{e} r_{i j}$ can be written as:

$$
\begin{equation*}
\mu_{e} r_{i j}=\mu_{e} r_{i j} \cos \left(<\boldsymbol{\mu}_{e}, r_{i j}>\right)=-\mu_{e} r_{i j} \sin \alpha \sin \left(\varphi_{j}+\frac{\pi}{N_{e}} i\right) \tag{S5}
\end{equation*}
$$

Substituting Eq.(S4) and Eq.(S5) for Eq.(S3), the magnetic interaction energy within each ring $E_{\text {ex(rings }}$ can be written as

$$
\begin{align*}
E_{e x(r i n g s)} & =\frac{N_{r}}{2} \sum_{j=0}^{N_{c}-1} \sum_{i=1}^{N_{c}-1} \frac{1}{r_{i j}^{3}}\left[\mu_{e}{ }^{2}-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{e} r_{i j}\right)^{2}\right] \\
& =\frac{N_{r} \mu_{e}^{2}}{2} \sum_{j=0}^{N_{e}-1} \sum_{i=1}^{N_{c}-1} \frac{1-3\left(1-\cos ^{2} \alpha\right) \sin ^{2}\left(\varphi_{j}+\frac{\pi i}{N_{e}}\right)}{\left\{2\left(R-r_{e}\right)^{2}\left[1-\cos \left(2 \pi i / N_{e}\right)\right]\right\}^{3 / 2}} \tag{S6}
\end{align*} .
$$

Second, the magnetic interaction energy within a chain $E_{\text {ex(chains) }}$ can also be calculated from the Eq.(S2). Considering the exchange energy $E_{\text {ex(chain) }}$ in a single chain, it is denoted as the sum of all exchange energy between the magnetic moments in a chain, namely, from the nearest-neighbor exchange energy to the furthestneighbor exchange energy. Here we set the number of rings is even. Thus, the total energy in a single chain can be calculated as:

$$
\begin{align*}
& E_{\text {ex(chain) }}=\sum E_{\text {ex(nearest) }}+\sum E_{\text {ex(next-nearrest })}+\ldots E_{\text {ex(firthest) }} \\
& =\sum_{\text {neastest }} \frac{1}{r_{i j}^{3}}\left[\mu_{e}^{2}-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{e} r_{i j}\right)^{2}\right]+\sum_{\text {next-neastest }} \frac{1}{r_{i j}^{3}}\left[\mu_{e}{ }^{2}-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{e} r_{i j}\right)^{2}\right]+\ldots \frac{1}{r_{i j}^{3}}\left[\mu_{e}^{2}-\frac{3}{r_{i j}^{2}}\left(\boldsymbol{\mu}_{e} r_{i j}\right)^{2}\right] \\
& =\frac{\left(N_{r}-1\right) \mu_{e}^{2}}{\left(1 \times 2 k r_{e}\right)^{3}}\left(\cos 2 \alpha-3 \cos ^{2} \alpha\right)+\frac{\left(N_{r}-2\right) \mu_{e}{ }^{2}}{\left(2 \times 2 k r_{e}\right)^{3}}\left(1-3 \cos ^{2} \alpha\right) \tag{S7}\\
& \\
& +\ldots \frac{\mu_{e}{ }^{2}}{\left.\left[\left(N_{r}-1\right) \times 2 k r\right]_{e}\right]^{3}}\left(\cos 2 \alpha-3 \cos ^{2} \alpha\right) \\
& =\frac{N_{r} K_{N_{r}} \mu_{e}^{2}}{\left(2 k r_{e}\right)^{3}}\left[L_{N_{r}}\left(\cos 2 \alpha-3 \cos ^{2} \alpha\right)+M_{N_{r}}\left(1-3 \cos ^{2} \alpha\right)\right]
\end{align*}
$$

where

$$
L_{N_{r}}=\sum_{i=1}^{\frac{1}{2}\left(N_{r}-1\right)<i \frac{1}{2}\left(N_{r}+1\right)} \frac{N_{r}-(2 i-1)}{N_{r}(2 i-1)^{3}},
$$

$$
M_{N_{r}}=\sum_{i=1}^{\frac{1}{2}\left(N_{r}-2\right)<i \leq \frac{1}{2} N_{r}} \frac{N_{r}-2 i}{N_{r}(2 i)^{3}},
$$

$$
K_{N_{r}}=M_{N_{r}}+L_{N_{r}}=\sum_{i=1}^{N_{r}} \frac{N_{r}-i}{N_{r} i^{3}}
$$

Finally, by substituting Eq.(S6) and Eq.(S7) into Eq.(S1), the total exchange energy $E_{e x}$ can be described in the following mathematical form:

$$
\begin{align*}
E_{e x}= & \frac{N_{r} \mu_{e}^{2}}{2} \sum_{j=0}^{N_{e}-1} \sum_{i=1}^{N_{N_{e}}-1} \frac{1-3\left(1-\cos ^{2} \alpha\right) \sin ^{2}\left(\phi_{j}+\frac{\pi i}{N_{e}}\right)}{\left\{2\left(R-r_{e}\right)^{2}\left[1-\cos \left(2 \pi i / N_{e}\right)\right]\right\}^{3 / 2} .} \tag{S8}\\
& +\frac{N_{r} N_{\mathrm{e}} K_{N_{r}} \mu_{e}^{2}}{\left(2 k r_{e}\right)^{3}}\left[\begin{array}{l}
L_{N_{r}}\left(\cos 2 \alpha-3 \cos ^{2} \alpha\right) \\
+M_{N_{r}}\left(1-3 \cos ^{2} \alpha\right)
\end{array}\right]
\end{align*}
$$

Figure. S1

FIG. S1 Schematic diagram of geometric relation between $\boldsymbol{\mu}_{e(i)}$ and $\boldsymbol{\mu}_{e(j)}$.

Figure. S2

FIG. S2 Angles between magnetic moment $\boldsymbol{\mu}_{e}$, axis direction of nanotube, and external field \boldsymbol{H}.

2. Detailed calculation of coercivity in the fanning rotation and

 coherent rotationAccording to the Eq. (11) in our previous work (see the ref. [24] of this article) and the Eq. (9) in this article, we can easily obtain the coercivity $\boldsymbol{H}_{\boldsymbol{c}}$ of coherent rotation and fanning rotation. The equations are as follows:

For the coherent rotation,
$H_{c}=\left\{\begin{array}{cc}-\frac{2 a}{b}\left(\cos ^{\frac{2}{3}} \theta_{0}+\sin ^{\frac{2}{3}} \theta_{0}\right)^{-\frac{3}{2}}, & 0^{\circ}<\theta_{0} \leq 45^{\circ} \\ -\frac{a \sin 2 \theta_{0}}{b}, & 45^{\circ}<\theta_{0} \leq 90^{\circ}\end{array}\right.$,
where
$a=\frac{N_{r} \mu_{e}^{2}}{2} \sum_{j=0}^{N_{e}-1} \sum_{i=1}^{N_{e}-1} \frac{3 \sin ^{2}\left(\varphi_{j}+\frac{\pi i}{N_{e}}\right)}{\left\{2\left(R-r_{e}\right)^{2}\left[1-\cos \left(2 \pi i / N_{e}\right)\right]\right\}^{3 / 2}}-3 \frac{N_{r} N_{e} K_{N_{r}} \mu_{e}{ }^{2}}{\left(2 k r_{e}\right)^{3}}$

$$
-\frac{1}{2} N_{r} N_{e} I_{s} \mu_{e}\left(N_{t}-N_{o}\right)
$$

$b=N_{r} N_{e} \mu_{e}$.

For the fanning rotation,
$H_{c}=\left\{\begin{array}{l}-\frac{2 d}{e}\left(\cos ^{\frac{2}{3}} \theta_{0}+\sin ^{\frac{2}{3}} \theta_{0}\right)^{-\frac{3}{2}},\left(0^{\circ}<\theta_{0} \leq 45^{\circ}\right) \\ -\frac{d}{e} \sin 2 \theta_{0},\left(45^{\circ}<\theta_{0} \leq 90^{\circ}\right)\end{array}\right.$,
where,

$$
\begin{aligned}
& d=\frac{N_{r} \mu_{e}^{2}}{2} \sum_{j=0}^{N_{e}-1 N_{e}-1} \sum_{i=1} \frac{3 \sin ^{2}\left(\varphi_{j}+\frac{\pi i}{N_{e}}\right)}{\left\{2\left(R-r_{e}\right)^{2}\left[1-\cos \left(2 \pi i / N_{e}\right)\right]\right\}^{3 / 2}} \\
& -\frac{N_{r} N_{e} K_{N_{r}} \mu_{e}^{2} L_{N_{r}}}{\left(2 k r_{e}\right)^{3}}-\frac{3 N_{r} N_{e} K_{N_{r}} \mu_{e}^{2} M_{N_{r}}}{\left(2 k r_{e}\right)^{3}} \\
& +\frac{1}{2} N_{r} N_{e} I_{s} \mu_{e}\left(N_{t}-N_{o}\right) \\
& e=\frac{N_{r}}{2} N_{e} \mu_{e} .
\end{aligned}
$$

It is clearly seen that there are four coefficients of a, b, d and e in the Eq. (S9) and Eq. (S10); all these coefficients are function of the geometric parameters of nanotubes, including axis ratio k, the length of nanotube N_{r}, the number of ellipsoid in a rings N_{e} and the thickness of nanotube, ${ }^{2} r_{e}$. To simply calculate the coercivity, we set N_{e} is equal to 50 and then study the influence of the geometric parameters of nanotube on the magnetic properties, especially for the coercivity \boldsymbol{H}_{c}. All the calculation results are demonstrated in the Fig. 3, Fig. 4 and Fig.5. In addition, in order to compare the coercivity of fanning rotation with that of coherent rotation, we set the same values of k, N_{r}, and $2 r_{e}$ to calculate magnetic properties, as shown in the Fig. 5.

