Supporting Information for

The Fate of Phenothiazine-Based Redox Shuttles in Lithium-Ion Batteries

Matthew D. Casselman,^a Aman Preet Kaur,^a Kishore Anand Narayana,^a Corrine F. Elliott,^a Chad Risko,^{a,b} * and Susan A. Odom^a,*

¹ Department of Chemistry, University of Kentucky, Lexington, KY 40506 ² Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511

Figure S1. Cyclic Voltammograms of 1.2 M LiPF₆ EC:EMC (3:7) at 100 mV/s. Potentials referenced to $Li^{+/0}$.

Figure S2. Cyclic Voltammograms of 0.3 mM EPT in 1.2 M LiPF₆ EC:EMC (3:7) at 100 mV/s. Potentials referenced to $\text{Li}^{+/0}$.

Figure S3. Cyclic Voltammograms of 0.3 mM DClEPT in 1.2 M LiPF₆ EC:EMC (3:7) at 100 mV/s. Potentials referenced to $Li^{+/0}$.

Figure S4. Cyclic_Voltammograms of 0.3 mM DBrEPT in 1.2 M LiPF₆ EC:EMC (3:7) at 100 mV/s. Potentials referenced to $Li^{+/0}$.

Figure S5. Cyclic_Voltammograms of 0.3 mM BCF3EPT in 1.2 M LiPF₆ EC:EMC (3:7) at 100 mV/s. Potentials referenced to $Li^{+/0}$.