Supporting Information: Oxidation of CO on a Carbon-based

Material Composed of Nickel Hydroxide on Hydroxyl Graphene

Oxide, (Ni₄(OH)₃/hGO) – a First-Principles Calculation

Chen-Hao Yeh and Jia-Jen Ho*

Department of Chemistry, National Taiwan Normal University

No. 88, Section 4, Tingchow Road, Taipei 116, Taiwan

* Corresponding author E-mail: jjh@ntnu.edu.tw

Phone: (886)-2-77346223

Fax: (886)-2-29324249

Figure S1. Transition state structures of the reduced mechanism by Ni₄ on hydroxyl graphene oxide (hGO) sheet : (a) $Ni_4OH_{(a)} + hGO_{(s)}$, (b) $Ni_4H_{(a)} + hGO_{(s)}$, (c) $Ni_{4(a)} + H_2O_{(a)} + hGO_{(s)}$, (d) $Ni_4(OH)_{2(a)} + hGO_{(s)}$ (slight distortion), (e) $Ni_4(OH)_{3(a)} + hGO_{(s)}$ (slight distortion), (f) $Ni_4(OH)_{2(a)} + hGO_{(s)}$ (large distortion) and (g) $Ni_4(OH)_{3(a)} + hGO_{(s)}$.

Figure S2. Transition state structures of the CO oxidation reaction on Ni₄(OH)₃/hGO sheet : (a) $CO_{(g)} + O_{2(a)}$ [hollow](left) $\rightarrow CO_{2(g)} + O_{(a)}$, and (b) $CO_{(g)} + O_{2(a)}$ [hollow](right) $\rightarrow CO_{2(g)} + O_{(a)}$, (c) $CO_{(g)} + O_{2(a)}$ [top] $\rightarrow CO_{2(g)} + O_{(a)}$, (d) $2^{nd} CO_{(g)} + O_{(a)}$ [top] $\rightarrow CO_{2(g)}$, (e) $CO_{(a)} + O_{2(a)} \rightarrow OCOO_{(a)}$, (f) $OCOO_{(a)} \rightarrow CO_{2(g)} + O_{(a)}$, (g) $2^{nd} CO_{(a)} + O_{(a)} \rightarrow CO_{2(g)}$ (h) $CO_{(g)} + O_{2(a)}$ [hollow] $\rightarrow CO_{3(g)}$, (i) $CO_{3(g)} \rightarrow CO_{2(g)} + O_{(a)}$.

Reaction Coordinate

Figure S3. Calculated potential-energy diagram with DFT-D3 correction for the reaction $Ni_4/hGO \rightarrow Ni_4(OH)_3/hGO$.

Figure S4. The calculated possible potential energy diagram with DFT-D3 correction for CO oxidation reaction on Ni₄(OH)₃/hGO sheet.