SUPPORTING INFORMATION

Selective electrocatalytic hydrogenation using Layer-by-Layer palladium nanoparticles electro-chemical formed in multilayer films.

M. A. Villalba,^a M. L. Bossi,^a E. J. Calvo,^{a*}

Figure 1 SI. A) Ellipsometric angles and B) thickness at 632.9 nm versus number of self-assembled layers for (PAH)_n(PAA)_m from solutions of pH 7.5 and 3.5, respectively. PAH (red squares) and PAA (blue circles).

Figure 2 SI. A) Individual adsorption step of self-assembled film of PAH (red squares) and PAA (blue circles) on Au-MPS modified electrode. B) Mass evolution of the film with each polyelectrolyte adsorption.

Figure 3 SI. PMIRRAS spectrua of Au-MPS substrate modified with: PAH_3 - PAA_2 (black line), PAH_3 - $PAA_2 + PdCl_4^{2-}$ (red line), PAH_3 - $PAA_2 + Pd^0$ (blue line) and PAH_3 - $PAA_2 + Pd^0$ treated at 350 °C (green line).

Figure 4 SI. Spectrum deconvolution in $v_{as}(COO^{-})$ and $v_{as}(COOH)$ gaussian contributions of A) PAH₃-PAA₂ + PdCl₄²⁻ and B) PAH₃-PAA₂ + Pd⁰ films.

Polymer bands correspond to CH_2 bendings modes in PAH and PAA monomers at 1453 cm⁻¹, a shoulder at 1637 cm⁻¹ that probably arises from asymmetric bending mode of NH_3^+ in PAH and three bands at 1405, 1574 and 1724 cm⁻¹ for symmetric and asymmetric stretching band for carboxilate groups $v_s(COO^-)$, $v_{as}(COO^-)$, and C=O stretching bond in protonated carboxylic acids respectively. Assuming the same extinction coefficients for both bands, the degree of ionization of PAA at a given pH was calculated from

Ionization Degree = $\frac{A_{\nu(COO^{-})}}{A_{\nu(COOH + COO^{-})}} * 100$

Charge is calculated taking into account theoretical values for polycation at pH 7.5 (80 % protonated) and the polyanion at pH 3.5 (just 5 % deprotonated), as we show in the next table:

Mass (ng.cm ⁻²)	198	319	253	480	331
Mol (nmol.cm ⁻²)	2.12	4.43	2.72	6.67	3.56
Charge (nmol.cm ⁻²)	1.7	0.2	2.2	0.3	2.8

Figure 5 SI. Chromatograms and calibration curves of A) acetophenone, B) 1-phenylethanol and C) ethylbenzene using a mobile phase proportions 65:35 methanol:water. f_d represents the dilution factor and it is equal to 20/1020.

Figure 6 SI. Chromatograms and calibration curves of A) benzophenone, B) diphenylmethanol and C) diphenilmethane using a mobile phase proportions 75:25 methanol:water. f_d represents the dilution factor and it is equal to 10/1010.

Figure 7 SI. Cyclic voltammetry of type II with n = 2 (black), 4 (orange), 6 (green) y 8 (blue) in 0,1 M sulfuric acid and 0.05 V.s⁻¹ scan rate in A) PdO and B) active potential region. Inset: evolution of palladium electrochemical active areas as function cycle n.

Figure 8 SI. A) Cyclic voltammetry of Type I-C electrodes with PAH (red line), PAH₂-PAA (blue line) and PAH₃-PAA₂ (green line) in 0,1 M H2SO4 at 0,05 V.s⁻¹. B) Peak potential and full width at half maximum of PdO reduction as function of the number of PAH adsorbed layers.

Figure 9 SI. Cyclic voltammetry of type II (A and C) and type II-C (B and D) with n = 2 (black), 4 (orange), 6 (green) y 8 (blue) in 0,1 M sulfuric acid and 0.05 V.s⁻¹ scan rate. Inset: evolution of palladium electrochemical active areas as function cycle n.