SUPPORTING INFORMATION

Vibrational Properties and Specific Heat of Core-Shell

Ag-Au Icosahedral Nanoparticles

Huziel E. Sauceda^l and Ignacio L. Garzón^{l*}

¹Instituto de Física, Universidad Nacional Autónoma de México,

Apartado Postal 20-364, 01000 México, D. F., México

Part I. Parameters of the Many-Body Gupta Potential.

To model the metallic bonding in the systems under study the *n*-body Gupta potential was used. Such potential for a bimetallic system is given by:

$$U(\lbrace r_k \rbrace) = \sum_{i=1}^{N} U_i = \sum_{i=1}^{N} \left\{ \sum_{j \neq i}^{N} \epsilon_{ij} e^{-p_{ij} \left(r_{ij} / r_{ij}^0 - 1 \right)} - \left[\sum_{j \neq i}^{N} \zeta_{ij}^2 e^{-2q \left(r_{ij} / r_{ij}^0 - 1 \right)} \right]^{1/2} \right\}$$

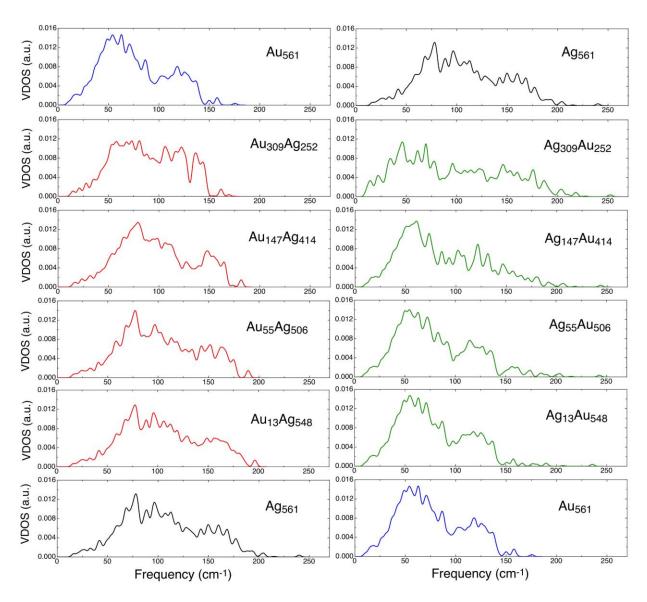
The parameters ϵ_{ij} , ζ_{ij} , p_{ij} , q_{ij} and r_{ij}^0 are fitted to bulk material properties. In this paper, a set of parameters fitted by Cleri and Rosato¹ were used in the case of homoatomic interactions, while for Au-Ag interactions, a combination of geometrical and arithmetical averages of the pure metal parameters were used. These parameters are shown in Table S1.

There is another set of parameters recently used by Calvo^{2,3} to compute the frequencies of metal nanoalloys. This second set of parameters were obtained by

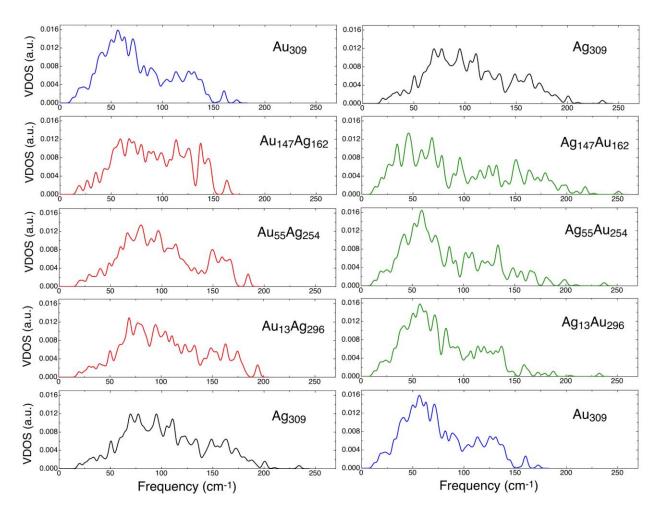
Rapallo $et~al.^4$ for the Au-Au interaction and in the case of the Ag-Ag one, the parameters were fitted by Baletto $et~al.^5$ For the Au-Ag interaction, the parameters were fitted by Rapallo $et~al.^4$ to the solubility energies in the case of ϵ_{ij} and ζ_{ij} , and for the p_{ij} and q_{ij} , an arithmetic average of the pure values was caried out.

Table S1. Parameters of the Gupta potential. The parameters used in this work are the values fitted by Cleri and Rosato¹ and their geometric and arithmetic averages for the heteroatomic interaction. Other parameter values were obtained by Rapallo et al. (Au-Au),⁴ Baletto et al. (Ag-Ag)⁵, and Rapallo et al. (Au-Ag).⁴

Material	ϵ_{ij} [eV]	ζ_{ij} [eV]	p_{ij}	q_{ij}	$r_{ij}^0[ext{Å}]$	Refs.
Au-Au	0.2061	1.790	10.229	4.036	2.884	1
Ag-Ag	0.1028	1.178	10.928	3.139	2.889	1
Au-Ag	0.1456^{a}	1.4521 ^a	10.579 ^b	3.588^{b}	2.8865 ^c	This work
Au-Au (in	0.2096	1.8153	10.139	4.033	2.884	4
Au-Ag)						
Ag-Ag	0.1031	1.1899	10.85	3.18	2.889	5
Au-Ag	0.149	1.4874	10.494 ^b	3.607 ^b	2.8865°	4


^a $\epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$ and $\zeta_{AB} = \sqrt{\zeta_A \zeta_B}$.

^b $p_{AB} = (p_A + p_B)/2$ and $q_{AB} = (q_A + q_B)/2$.


 $^{^{}c} r_{AB} = (r_A + r_B)/2.$

Part II. Vibrational density of states (VDOS) of bimetallic nanoparticles

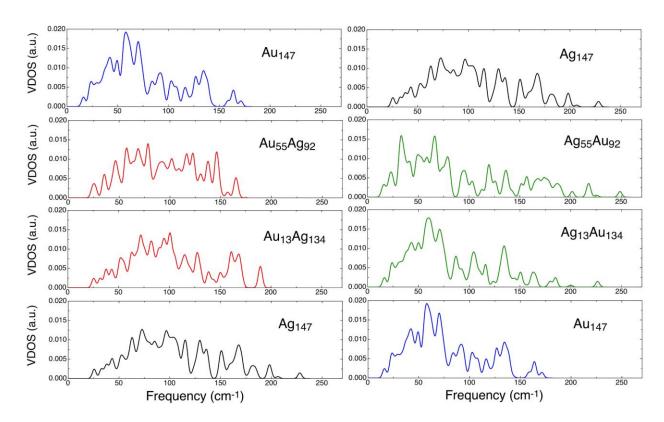

Here it is shown the VDOS for 561- (Fig. S1), 309- (Fig. S2) and 147-atoms (Fig. S3) bimetallic nanoparticles.

Figure S1. Vibrational density of states (VDOS) for the 561-atom bimetallic icosahedral Au_{core} - Ag_{shell} (left panels) and Ag_{core} - Au_{shell} (right panels) nanoparticles with different core-shell compositions. The VDOS for the pure Au_{561} and Ag_{561} icosahedral nanoparticles are also displayed for comparison.

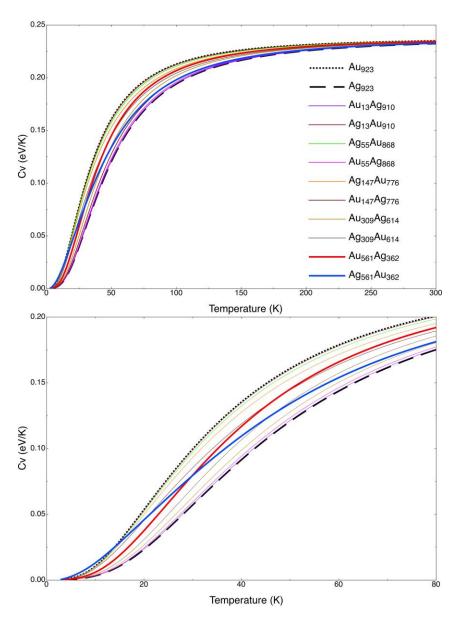

Figure S2. Vibrational density of states (VDOS) for the 309-atom bimetallic icosahedral Au_{core} - Ag_{shell} (left panels) and Ag_{core} - Au_{shell} (right panels) nanoparticles with different core-shell compositions. The VDOS for the pure Au_{309} and Ag_{309} icosahedral nanoparticles are also displayed for comparison.

Figure S3. Vibrational density of states (VDOS) for the 147-atom bimetallic icosahedral Au_{core} - Ag_{shell} (left panels) and Ag_{core} - Au_{shell} (right panels) nanoparticles with different core-shell compositions. The VDOS for the pure Au_{147} and Ag_{147} icosahedral nanoparticles are also displayed for comparison.

Part III. Specific heat of bimetallic nanoparticles

The specific heat as a function of temperature is displayed for all 923-atom coreshell Ag-Au icosahedral nanoparticles showed in Fig. 1. The data in Fig. 1 shows a smooth transition between the pure metal nanoparticles. The only case that does not follow this trend is the $Ag_{561}Au_{362}$ nanoparticle with Ag core.

Figure S4. Low-temperature dependence of the specific heat of core-shell bimetallic icosahedral nanoparticles. The bottom panel shows the specific heat in a smaller range of temperature.

References

- 1 F. Cleri and V. Rosato, *Phys. Rev. B*, 1993, **48**, 22.
- 2 F. Calvo, J. Phys. Chem. C, 2011, 115, 17730.
- 3 F. Calvo, J. Phys. Chem. C, 2012, 116, 7607.
- 4 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, *J. Chem. Phys.*, 2005, **122**, 194308.
- 5 F. Baletto, C. Mottet and R. Ferrando, *Phys. Rev. B*, 2002, **66**, 155420.