1	Laboratory study on the OH-initiated degradation kinetics of						
2	dehydroabietic acid						
3	Chengyue Lai, Yongchun Liu*, Jinzhu Ma, Qingxin Ma, and Hong He*						
4	State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-						
5	Environmental Sciences, Chinese Academy of Sciences), Beijing, 100085, China						
6							
7	Electronic Supplementary Information						
8							
9	1. Detailed experimental procedures for OH determination:						
10	In this study, the measurements of salicylic acid degradation were both separately done						
11	from the DHAA degradation experiments and concurrently with the DHAA measurements.						
12	The OH concentration were calculated through the determination of the products of salicylic						
13	acid-OH reaction (2,3-dihydroxybenzonic acid and 2,5-dihydroxybenzonic acid), the principles						
14	are as follows. After a period of time for the reaction between salicylic acid and OH, the						
15	accumulative content of the products can be determined. It has been found that the production						
16	yields of 2,3-dihydroxybenzonic acid and 2,5-dihydroxybenzonic acid from the gas phase OH						
17	radical reaction with solid phase salicylic acid on filter are 52 % and 48 %, respectively ¹ . Thus,						
18	the total mole number of OH which reacted with salicylic acid were calculated as the gas flow						
19	during this period was constant. Therefore, the near surface OH concentration can be calculated						
20	by the ratio of total mole number of OH with total gas flow.						
21	In this study, the OH exposure results obtained concurrently with the DHAA						

^{*}Corresponding authors. E-mail address: ycliu@rcees.ac.cn (Y. Liu), honghe@rcees.ac.cn (H. He)

measurements were used. Based on the method stated above, a series of repeated experiments 22 (7 times) were carried out for each OH concentration, the results showed that the relative 23 standard deviation (RSD) for OH concentrations were less than 10 %, which means that the 24 repeatability of OH levels are acceptable. Three OH concentrations were obtained, they were 25 $(2.05\pm0.06)\times10^7$ molecules cm⁻³, $(2.38\pm0.08)\times10^7$ molecules cm⁻³ and $(2.99\pm0.10)\times10^7$ 26 molecules cm⁻³, respectively. These three OH concentrations were used for the DHAA 27 degradation experiments. In each experiment, we only need to set the ratio of N₂ to H₂O₂, total 28 flow rate, temperature, and RH to get the desired OH concentration. By changing the ratio of 29 N₂ to H₂O₂, the OH concentration in the reactor can be adjusted within 10 % of uncertainty. 30

31

32 2. Preparation procedures for the mixed samples:

33 DHAA-(NH₄)₂SO₄: 10.0 mL of DHAA solution (50.0 μ g·mL⁻¹ in methanol) was mixed 34 with 10.0 mL of (NH₄)₂SO₄ aqueous solution (50.0 mg·mL⁻¹) and stirred uniformly for two 35 hours. Subsequently, the solvent (methanol/water) was evaporated slowly using a rotary 36 evaporator, and then the mixture was dried at room temperature in a flask.

DHAA/soot: 0.50 g soot was added to 50.0 mL of DHAA (10.0 μg·mL⁻¹ in methanol).
After stirring uniformly for two hours, the solvent (methanol) was evaporated slowly using a
rotary evaporator and finally the mixture was dried at room temperature in a flask.

DHAA- $(NH_4)_2SO_4$ /soot: 0.50 g soot was added to a mixed solution containing 10.0 mL of DHAA (50.0 µg·mL⁻¹ in methanol) and 10.0 mL of $(NH_4)_2SO_4$ aqueous solution (50.0 mg·mL⁻ 1), followed by stirring the mixture uniformly for two hours and then evaporating the solvent (methanol/water) to dryness. Finally the mixture was dried at room temperature in a flask.

45 3. Diffusion corrections:

In general, if experiments for the heterogeneous reaction are carried out under ambient pressure and on packed powder samples, both external (gaseous reactants from gas phase to the surface) and internal diffusions (from the surface layer to the underneath layers and into the pores of particles or films) need be corrected ²⁻⁴. However, it is unnecessary to do both external and internal diffusion corrections in this study based on the following reasons.

Firstly, in this study, a particle phase reference salicylic acid (SA) was used to measure 51 52 the near-surface OH concentration. The k_2 value for SA-OH reaction and DHAA-OH reaction were on the same order of magnitude, which means that OH concentration gradients should be 53 very close in these two cases. Thus, we didn't do additional external diffusion corrections. On 54 the other hand, the packed powder was used in our work, the internal diffusion of OH into the 55 possible porous structure or underneath layers might be happened. As shown in Fig. S2 and 56 Fig. S3, the surface of the salicylic acid, DHAA and the mixed samples are smooth, but not 57 porous as supported by SEM images. For the heterogeneous reaction on packed powers, KML 58 model is usually used to correct this kind of internal diffusion. In KML model, the probe depth 59 of reactive gas can be expressed as a complex function of several parameters including bulk 60 density (ρ_b), true density (ρ_t), pore size (r_p), porosity (θ), and particle diameter (d_p) of powder 61 sample, diffusion constant (D_f) of reactive molecules, and the true uptake coefficient (γ_t). ^{2, 3}. 62 Generally speaking, a small $D_{\rm f}$ and a large $\gamma_{\rm t}$ should result in a small probe depth and vice 63 versa. However, KML model can be used only if the γ_t is less than 10⁻⁴. This has been verified 64 in our previous work ⁵. Even for a reactive gas with γ_t of 7×10^{-3} , the reaction is found to occur 65

on the surface layer ⁵. According to the measured k_2 , the estimated γ_t should be around unit. Therefore, it is impossible to use KML model to correct this kind of diffusion. We think the reaction between OH and DHAA should take place on the surface layer and the internal diffusion to the underneath layers is negligible. This assumption is reasonable because it has been widely accepted that oxidation of solid organic aerosols by radicals is a surface reaction ⁶.

72

73 References

- 74 1 B. Yao, T. Zhu and W. Lin, Environ. Chem., 2006, 25, 772-775.
- 75 2 L. F. Keyser, S. B. Moore and M. T. Leu, J. Phys. Chem., 1991, 95, 5496-5502.
- G. M. Underwood, P. Li, H. Al-Abadleh and V. H. Grassian, *J. Phys. Chem. A*, 2001, 105,
 6609-6620.
- 78 4 J. F. Widmann and E. J. Davis, J. Aerosol Sci., 1997, 28, 87-106.
- 79 5 Y. Liu, Q. Ma and H. He, Environ. Sci. Technol., 2012, 46, 11112-11118.
- 80 6 I. J. George and J. P. Abbatt, Nat. Chem., 2010, 2, 713-722.

of indic officiate of bille of bill in thinked building	82	Table S1.	Average	size	of DHAA	mixed	samples
---	----	-----------	---------	------	---------	-------	---------

Sample	Average size (nm)
DHAA-AS	217.6 ± 95.7
DHAA/soot	52.1 ± 18.7
DHAA-AS/soot	89.8 ± 31.7

85

Fig. S1. Schematic diagram of the experimental set-up. The set-up consists of separated OH generation system and reaction system. The gas circuit system was divided into three parts, one of which was used to carry pure N_2 with water vapor corresponding to 40 % RH, another to carry pure O_2 , a third carrying H_2O_2 with N_2 as the carrier gas.

- 92 Fig. S2. Optical photomicrographs of the mixed samples. (A) DHAA-AS; (B) (NH₄)₂SO₄; (C) DHAA/soot;
- 93 (D) DHAA-AS/soot.

- 96 Fig. S3. SEM images of dry dehydroabietic acid and salicylic acid films. (A) DHAA; (B) salicylic acid.
- 97
- 98

100 Fig. S4. SEM image of soot particles used in this study.

Fig. S5. Vaporization of DHAA in air flow and reaction loss between DHAA and H_2O_2 flow at different temperatures. (n=3, error bars represent 1 standard deviation). (A) Vaporization of DHAA at 5 °C; (B)

105 Vaporization of DHAA at 30 °C.