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Temperature effect on the spectral behaviour
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Figure S1. Absorption (left) and emission (right) spectra of 1 in Tol as a function of temperature.
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Figure S2. Absorption (left) and emission (right) spectra of 2 in Tol as a function of temperature.
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Figure S3. Best fit of kisc data of 2 in toluene at different temperatures according to equation S1.

y =In (P1 + P2*exp(-P3*x)) where y = Inkjgc, x = 1/T, P1 = k?sc, P2 = Aic, P3=E,/R eq. S1
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Figure S4. Best fit of ¢r data of 2 in toluene at different temperatures according to equation S2.
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lim 4 lim
y = In (P1*exp(-P2*¥x) + P3) where y = In(1/¢r), x = 1/T, P1 = ATF /(I)F ,P2=E,/R,P3 = 1/(1)F eq. S2
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Figure S5. Trend of ¢r data of 2 in toluene as a function of temperature in all the range investigated,

according to equation S3.
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Figure S6. Best fit of ¢r data of 1 in toluene at different temperatures according to equation S2.
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Figure S7. Trend of ¢r data of 1 in toluene as a function of temperature in all the range investigated,
according to equation S3.

Table S1. Summary of the derived parameters for the activated decay channels for 1 and 2. The energy
barrier (E,) from experimental data in Tol and the energy difference between S; and T, [AEy, (S;-T,)] from

DTFT calculations in Tol and MeCN, are in kcal/mol and kY% in s

compound by Eq. 2S by Eq. IS
: AEw(Si-Ty)  AEw(Si-Ty)
lim 0 th{D1 th
O™ Ea kisc  Fa in Tol in MeCN
1 1.0 4.1 0.7 1.6

2 0.61 6.5 4.2E8 6.0 3.4 4.7




Quantum-mechanical calculations

Compound 1:

Table S2. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states
of 1 in MeCN (simulated by the CPCM model) obtained by TDDFT/CAM-B3LYP calculation after CAM-
B3LYP optimization of the ground state; the 6-31G(d) basis set was used in all cases. Experimental
transition energies are also reported for comparison.

Comp.d Excited state  Transition energy (eV)  Multiplicity Nature (%) f
Calc. Exp.
1 1 1.84 Triplet =T 55 0.0000
2 2.52 Triplet Ty _{—T] 33 0.0000
3 2.79 Triplet Ty _goT] 61  0.0000
4 3.37 3.28 Singlet Ty—T] 81 2.0679
5 3.38 Triplet Ty _ oM 21 0.0000
6 3.44 Triplet Ny _,oT] 62 0.0000
7 3.94 Triplet Ny _g=T] 68 0.0000
8 3.97 Triplet Ty _ 3=, 34 22 0.0000
9 4.01 Singlet ny _,—m] 65 0.0000
10 4.04 Triplet Ny _19=T] 63 0.0000
11 4.12 Triplet Ty _ =T 34 0.0000

12 4.23 Singlet =T, 5 69  0.0956




Table S3. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states
of 1 in Tol (simulated by the CPCM model) obtained by TDDFT/CAM-B3LYP calculation after CAM-
B3LYP optimization of the ground state; the 6-31G(d) basis set was used in all cases. Experimental
transition energies are also reported for comparison.

Comp.d Excited state  Transition energy (eV)  Multiplicity Nature (%) f
Cale. Exp.
1 1 1.85 Triplet =] 59 0.0000
2 2.54 Triplet Ty _{—T] 36 0.0000
3 2.73 Triplet Ty _g=T] 53 0.0000
4 3.40 3.25 Singlet -] 83 2.1345
5 3.40 Triplet Ty _ o] 22 0.0000
6 3.43 Triplet Ny _,oT] 55 0.0000
7 3.96 Triplet Ty _ =T s 25 0.0000
8 4.00 Singlet ny _,-m] 58 0.0000
9 4.02 Triplet Ty _ s> 73 0.0000
10 4.14 Triplet Ty _ 3> 33 0.0000
11 4.20 Triplet Ny _ 4] 14 0.0000

12 429 Singlet Ty—TL 3 66 0.0579
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Figure S8. Molecular orbitals involved in the main configurations describing the lowest singlet and triplet
states of 1.



Compound 2:
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Table S4. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states
of 2 in MeCN (simulated by the CPCM model) obtained by TDDFT/CAM-B3LYP calculation after CAM-
B3LYP optimization of the ground state; the 6-31G(d) basis set was used in all cases. Experimental
transition energies are also reported for comparison.

Comp.d Excited state  Transition energy (eV)  Multiplicity Nature (%) f
Cale. Exp.
2 1 1.78 Triplet o] 62 0.0000
2 238 Triplet Ty _ =T, 40 0.0000
3 2.79 Triplet T -10= 7 11 42 0.0000
4 2.79 Triplet o= 11 42 0.0000
5 3.20 Triplet Ty _soT] 25 0.0000
6 3.24 3.13 Singlet -] 85  2.3797
7 3.44 Triplet Ny _ 7o 5 42 0.0000
8 3.44 Triplet Ny _ =T 11 42 0.0000
9 3.79 Triplet Ty 12T, 5, 21 0.0000
10 3.90 Singlet =T} 73 0.0000
11 3.94 Triplet Ty _ 4T 48 0.0000

12 4.01 Singlet Ny =1 43 0.0000




Table S5. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states
of 2 in Tol obtained by TDDFT/CAM-B3LYP calculation after CAM-B3LYP optimization of the ground
state; the 6-31G(d) basis set was used in all cases. Experimental transition energies are also reported for
comparison.

Comp.d Excited state  Transition energy (eV)  Multiplicity Nature (%) f
Cale. Exp.
2 1 1.80 Triplet -] 65 0.0000
2 2.42 Triplet Ty _1-T] 41 0.0000
3 2.73 Triplet Ty _ o= 11 35 0.0000
4 2.73 Triplet Ty _ g™ 11 35 0.0000
5 3.24 Triplet Ty _g=m] 25 0.0000
6 3.28 3.13 Singlet o] 85 24161
7 3.43 Triplet Ny _ 7=} 34 0.0000
8 3.43 Triplet Ny _ =T, 11 34 0.0000
9 3.83 Triplet Ty _ 17T 20 0.0000
10 3.99 Singlet =T} 69  0.0000
11 4.01 Singlet Ny_ =T 41 39 0.0000

12 4.01 Singlet Ny 6=T, e 39 0.0000




Figure S9. Molecular orbitals involved in the main configurations describing the lowest singlet and triplet
states of 2.
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Figure S10. Normalized absorption spectra of 1 and 2 recorded in toluene and acetonitrile (red lines)
compared with those calculated by CAM-B3LYP/6-31G(d) including the CPCM model (black lines).



