Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases

Wook Lee¹, Spiridoula Matsika^{1*}

¹Department of Chemistry, Temple University,

Philadelphia, Pennsylvania 19122, United States

Supplementary information

				ATTA				
#1	Energy (eV)	Character	#2	Energy (eV)	Character	#3	Energy (eV)	Character
S 1	4.949 (0.0009)		S1	4.893 (0.0004)		S 1	4.910 (0.0002)	
S2	4.970 (0.0003)		S2	4.901 (0.0003)		S2	4.956 (0.0007)	
S3	4.999 (0.1403)		S3	5.027 (0.0754)	DP (11%)	S3	5.017 (0.0372)	DP (17%)
S4	5.086 (0.0056)	DP (94%)	S4	5.060 (0.0773)	DP (87%)	S4	5.038 (0.1039)	DP (15%)
S5	5.287 (0.1167)		S5	5.154 (0.0479)	CT (89%)	S5	5.193 (0.0297)	CT, DP (98%)
S6	5.307 (0.1594)	CT (58%)	S6	5.324 (0.1000)		S6	5.309 (0.1142)	
S7	5.433 (0.0950)	CT (83%)	S7	5.384 (0.2328)		S7	5.399 (0.2499)	
S 8	5.548 (0.0001)		S 8	5.578 (0.0002)		S 8	5.562 (0.0017)	
S9	6.023 (0.0092)		S9	5.985 (0.0246)		S9	6.037 (0.0056)	
#4	Energy (eV)	Character	#5	Energy (eV)	Character			
S 1	4.954 (0.0005)		S1	4.887 (0.0014)				
S2	5.031 (0.0003)		S2	4.949 (0.0006)				
S3	5.059 (0.1189)		S3	4.974 (0.0493)	CT (81%)			
S4	5.192 (0.0231)	DP (93%)	S4	5.126 (0.0389)	DP (18%)			
S5	5.230 (0.1453)	CT (91%)	S5	5.284 (0.1634)	DP (20%)			
S6	5.363 (0.1967)		S 6	5.335 (0.1048)	CT (91%)			
S7	5.468 (0.0758)	CT (89%)	S 7	5.477 (0.1267)				
S 8	5.655 (0.0001)		S 8	5.561 (0.0001)				
S9	6.093 (0.0136)		S9	5.952 (0.0122)				
				СТТА				
#1	Energy (eV)	Character	#2	Energy (eV)	Character	#3	Energy (eV)	Character
S 1	4.866 (0.0003)		S1	4.827 (0.0653)		S 1	4.954 (0.0008)	
S2	4.934 (0.0593)		S2	4.911 (0.0002)		S2	4.964 (0.0010)	
S3	5.091 (0.0006)		S 3	4.970 (0.0007)		S3	4.994 (0.0500)	
S4	5.176 (0.0330)	DP (96%)	S4	5.190 (0.0218)	DP (95%)	S4	5.175 (0.0174)	DP (96%)
S5	5.405 (0.2045)		S5	5.355 (0.1757)		S5	5.360 (0.1779)	
S6	5.673 (0.2521)		S6	5.544 (0.1132)		S6	5.503 (0.2807)	
S7	5.707 (0.0067)		S 7	5.730 (0.1226)		S7	5.762 (0.0032)	
S 8	5.924 (0.0012)		S 8	5.809 (0.0050)		S 8	5.856 (0.0449)	
S9	5.990 (0.0342)		S9	5.910 (0.0490)		S9	6.020 (0.0072)	CT (97%)
#4	Energy (eV)	Character	#5	Energy (eV)	Character			
S1	4.951 (0.0005)		S 1	4.911 (0.0002)				
S2	5.018 (0.0045)		S2	5.036 (0.0009)				
S3	5.035 (0.0362)		S3	5.090 (0.0504)				
S4	5.157 (0.0220)	DP (96%)	S4	5.230 (0.0203)	DP (94%)			
S5	5.390 (0.1876)		S5	5.410 (0.1655)				
S6	5.497 (0.2885)		S6	5.511 (0.3012)				
	5 53 ((0, 00, 10)		S 7	5.856 (0.0025)				
S7	5.736 (0.0042)							
S7 S8	5.736 (0.0042) 6.023 (0.0035)	CT (96%)	S 8	6.028 (0.0386)				

Table S1. Vertical excitation energies and oscillator strengths of all frames

#1	Energy (eV)	Character	#2	Energy (eV)	Character	#3	Energy (eV)	Character
S 1	4.871 (0.0755)	CT (92%)	S 1	4.905 (0.0375)	CT (88%)	S 1	4.827 (0.0007)	
S2	4.980 (0.0166)		S2	4.957 (0.0003)		S2	4.908 (0.0002)	
S3	4.998 (0.0008)		S3	5.007 (0.0005)		S3	5.062 (0.0647)	
S4	5.072 (0.0133)		S4	5.098 (0.0289)	DP (85%)	S4	5.139 (0.0828)	CT (88%)
S5	5.226 (0.0344)	DP (90%)	S5	5.173 (0.1541)	CT (63%)	S5	5.323 (0.0464)	CT (23%)
S6	5.400 (0.2399)		S6	5.378 (0.1623)	CT (84%)	S6	5.442 (0.1948)	CT (74%)
S 7	5.542 (0.2746)		S 7	5.527 (0.0474)		S7	5.564 (0.2354)	
S 8	5.572 (0.0009)		S 8	5.564 (0.2138)		S 8	5.714 (0.0008)	
S9	5.757 (0.0048)		S9	5.624 (0.0025)		S9	5.863 (0.0328)	
#4	Energy (eV)	Character	#5	Energy (eV)	Character			
S 1	4.871 (0.0001)		S 1	4.865 (0.0032)				
S2	4.972 (0.0009)		S2	4.918 (0.0194)	CT (97%)			
S3	4.991 (0.0579)	CT (95%)	S3	5.060 (0.0966)				
S4	5.068 (0.0393)	CT (90%)	S4	5.111 (0.0004)				
S5	5.227 (0.0507)	DP (92%)	S5	5.172 (0.0180)	DP (94%)			
S6	5.393 (0.2104)		S6	5.369 (0.2282)				
S 7	5.532 (0.2773)		S 7	5.575 (0.2586)				
S 8	5.596 (0.0161)		S 8	5.635 (0.0145)				
S9	5.818 (0.0046)		S9	5.669 (0.0045)				

The states marked as CT in character columns are the CT between a flanking base and an adjacent thymine.

Frame	e	1	2	3	4	5	Average
ል ጥጥ ል	$n\pi^*$	5.10108	5.08622	5.03823	5.10435	5.02534	5.071044
AIIA	$\pi\pi^*$	5.39422	5.4097	5.41395	5.41306	5.484	5.422986
	$n\pi^*$	5.2056	5.06997	5.06314	5.10823	5.10781	5.11095
UIIA	$\pi\pi^*$	5.37852	5.42716	5.44038	5.41149	5.47611	5.426732
	$n\pi^*$	5.1761	5.159	5.09189	5.06296	5.03528	5.105046
UIIA	$\pi\pi^*$	5.37172	5.31215	5.38089	5.36876	5.36436	5.359576

Table S2. Vertical excitation energies of a thymine monomer

Table S3. Vertical excitation energies of flanking bases in selected frames

	Guanine (Frame 1)	Cytosine (Frame 4)	Adenine (Frame 4)
$\pi{\pi_1}^*$	5.01164	5.02857	5.13917
$\pi {\pi_2}^*$	5.61813	5.55651	5.35501
$n\pi^*$	5.63811	5.74521	5.69671

Figure S1. Corresponding NTOs of excited states listed in Table S1.

*******{ -- **** Ę ւ. ••••••¢ -+ 4 S5-2 S5-1 S6 *********€ → ********€ Same d S7-1 **S8** 200 -2

S4-2

S9-1

S4-1

S9-2

S12

GTTA Frame 1

GTTA Frame 2

GTTA Frame 4

GTTA Frame 5

