Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supplementary Information

Synthesis of Nano-TaO $_x$ Oxygen Reduction Reaction Catalysts on Multi-Walled Carbon Nanotubes

Connected via a Decomposition of Oxy-tantalum

Phthalocyanine

Akimitsu Ishihara,^{a,b,*} Mitsuharu Chisaka,^{c,*} Yoshiro Ohgi,^{‡a} Koichi Matsuzawa,^a

Shigenori Mitsushima^{a,b} and Kenichiro Ota^a

^a Green Hydrogen Research Centre, ^b Institute of Advanced Sciences, Yokohama National University,

79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan.

^c Department of Electronics and Information Technology, Hirosaki University,

3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.

‡ Present address: Kumamoto Industrial Research Institute, 3-11-38 Azuma-cho, Azuma-ku, Kumamoto, Kumamoto 862-0901, Japan.

*Corresponding authors

Phone/Fax: +81 45 339 4021 E-mail: a-ishi@ynu.ac.jp

Phone/Fax: +81 172 39 3559 E-mail: chisaka@eit.hirosaki-u.ac.jp

S1. The ORR selectivity of TaO_x–MWCNT.

Rotating ring-disk electrode (RRDE) voltammograms were obtained to help evaluate the ORR selectivity of TaO_x–MWCNT that showed the maximum activity. The catalyst was synthesized as follows: 0.6 g of TaOPc (Dainichiseika Color & Chemicals Mfg. Co., Japan) and 0.256 g of MWCNT powder (VGCF-X, SHOWA DENKO K.K., Japan) were mixed using a planetary ball mill. The mixed powders were heated at 1173 K for 3 h under flowing a gas mixture of 2% H₂, 0.5% O₂ and 97.5% N₂ in a rotary furnace. Using a glassy carbon (GC) disk (6 mm diameter)–platinum ring (7 mm inner diameter and 9 mm outer diameter) electrode as a working electrode, three electrode cells were prepared as reported in reference 16. RRDE voltammograms were recorded in the disk potential range of 0.2–1.2 V at a scan rate of 5 mV s⁻¹ in the cathodic direction, while keeping the ring electrode potential at 1.2 V, with a rotation speed of 1600 rpm after bubbling O₂ for 1800 s. Fig. S1 shows a RRDE voltammogram of the TaO_x–MWCNT. The number of electrons transferred per unit oxygen molecule, *n*, was calculated with the following equation:

$$n = -4(I_{\rm dO} - I_{\rm dN})/[-(I_{\rm dO} - I_{\rm dN}) + I_{\rm rO}/N]$$
(S1)

where I_{dX} and I_{rX} denote the disk and ring current obtained under X atmosphere, respectively, where X = O or N and corresponds to either oxygen or nitrogen; N is the collection efficiency (0.337). At E = 0.6 V, n was 3.3 and gradually increased to 3.6 with decreasing E to 0.2 V suggesting that ORR proceeded via both 4-(O₂ + 4H⁺ + 4e⁻ \rightarrow 2H₂O) and 2-(O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O₂) electron reaction pathways.

The $-(I_{dO} - I_{dN}) m^{-1}$ was 25 mA g⁻¹ at E = 0.8 V, similar to the maximum value reported in the main body of the text. Commercial 50% (w/w) Pt-C catalysts (TEC10E50E, Tanaka Kikinzoku Kogyo K.K., Japan) showed three orders of magnitude higher $-(I_{dO} - I_{dN}) m^{-1}$ under the identical conditions except that 0.1 mol dm⁻³ HClO₄ was used as an electrolyte solution for Pt-C. These results indicate that the activity of TaO_x–MWCNT should be enhanced accompanied by improving the selectivity.

Fig. S1 A RRDE voltammogram of TaO_x –MWCNT after pyrolysis at 1173 K for 3 h under flowing a gas mixture of 2% H₂, 0.5% O₂ and 97.5% N₂. Scans were performed under N₂ and O₂ with a rotation speed of 1600 rpm at a scan rate of 5 mV s⁻¹ in the cathodic direction in 0.1 mol dm⁻³ H₂SO₄. The TaO_x–MWCNT loading was 1.6 mg cm⁻².

S2. Elemental analysis of TaOPc precursor.

The TG-DTA curves of TaOPc under flowing air are shown in Fig. S2. The DTA curve shows a sharp peak at around 800 K and TG curve reaches plateau at around 850 K indicative of the burning off of carbon and nitrogen species in TaOPc. When the stoichiometric TaOPc was oxidized to form Ta₂O₅, the mass loss should be 69% whereas observed value from Fig. S2 is only 37% indicating that the used TaOPc precursor is non-stoichiometric; it contained less carbon and nitrogen and thus more tantalum atoms compared with stoichiometric TaOPc. The powders after the TG-DTA test were completely white, ruling out the presence of the remaining carbon and nitrogen species.

Fig. S2 TG-DTA curves of TaOPc under flowing air. The heating rate was 10 K min⁻¹.