Experimental and Catalytic Testing

Synthesis of Ag/Al₂O₃ catalysts

The alumina-supported Ag catalysts discussed were prepared with Ag loadings from 0.29 to 13 wt. % using the entrapped method. In a typical synthesis for a 2.4 wt. % Ag/Al₂O₃ sample, AgNO₃ (63 mg/0.37 mmol) and aluminium tri-*sec*-butoxide (8.32 ml/32.4 mmol) were dissolved in 2-butanol (1.98 ml). The resulting gel was stirred at 100 °C for 3 h to give a yellow suspension. At this point, 4.5 ml of deionized water were slowly added and the clear gel hydrolyzed instantly. Stirring was continued for another hour at 100 °C, before the suspension was allowed to cool to room temperature. The solid catalyst was filtered off, and the filter cake thoroughly washed with acetone, dried at 100 °C and calcined for 1 h at 600 °C (10 °C/min ramp). Prior to use, the catalyst was activated in flowing H₂ at 300 °C for 30 min. The same procedure was followed for preparing Cu/Al₂O₃ catalysts except that copper acetate was used. The metal content was determined by ICP-AES.

Procedure for N-alkylation of nitroarenes using alcohols

The catalytic N-alkylation of nitroarenes using alcohols was carried out under N_2 at 140 °C in a 25 ml round bottom flask equipped with a condenser. Typically, 1.0 mmol nitrobenzene and 6 mmol of benzyl alcohol were dissolved in 5 ml p-xylene; 0.100 g catalyst and 0.1 g base promoter were added. Aliquots were removed at regular time intervals and analyzed by gas chromatography. The products were identified by GC-MS.

Ratio of benzyl	Conv.	Sel.(3)	Sel.(4)	Sel.(5)	Sel.(6)
alcohol/nitrobenzene					
3	100	8	13	60	19
6	100	98	2	0	0
8	100	92	7	1	0
12	100	96	4	0	0

Table S1 Effect of the ratio benzyl alcohol/nitrobenzene on the activity after 19 h

Reaction condition: nitrobenzene 1 mmol, Catalyst 100 mg metal 2.2 mol%, 100 mg Cs₂CO₃ 100 mg 140 °C flowing N₂ 19 h

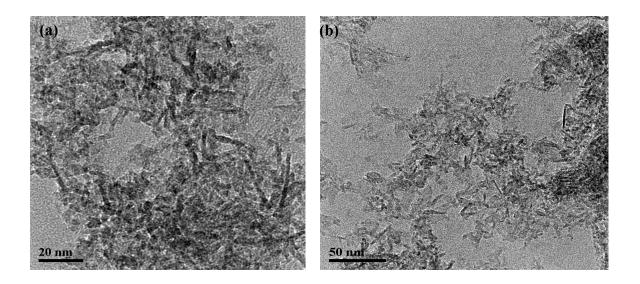
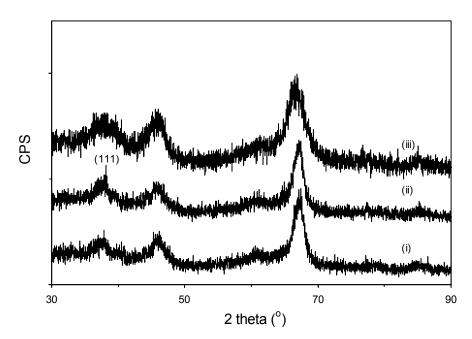
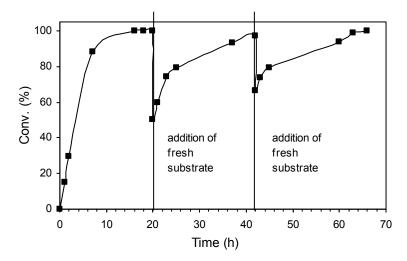


Figure S1. TEM image of the 2.4 wt% (a) before the reaction (b) after the reaction

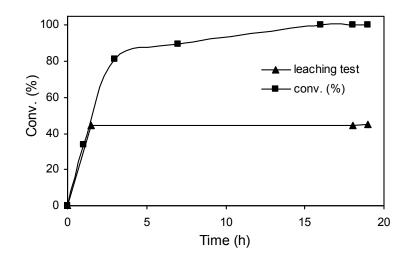

Figure S2. XRD diffractogram (i) commercial γ -Al₂O₃ (ii) 2.4 wt% Ag/ commercial γ -Al₂O₃ from wet impregnation method (crystalline size calculated to be 5.4 nm) (iii) 2.4 wt% Ag/ γ - Al₂O₃ from sol-gel method.

Fig S3 Ag XPS spectrum of (a) Ag/Al $_2O_3$ and (b) bulk Ag

Figure S4. Recycling of Catalyst. Reaction condition: nitrobenzene 1 mmol, benzyl alcohol 6 mmol, basic additives 100mg, xylene 5 ml, Cat 2.2 mol%

Figure S5. N-alkylation of nitrobenzene with benzyl alcohol in the presence (\blacksquare) and absence (\blacktriangle) of 2.4 wt % Ag/Al₂O₃ (catalyst was removed by filtration after 2 h). Reaction conditions: nitrobenzene 1 mmol, benzyl alcohol 6 mmol, Catalyst 100 mg metal 2.2 mol%, 100 mg Cs₂CO₃ 100 mg 140 °C flowing N₂ 19 h