Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic Supplementary Information

Design and photovoltaic characterization of dialkylthio benzo[1,2-b:4,5-b']dithiophene polymers with different accepting units

Guidong Ge, Jinan Gu, Enwei Zhu, Jiefeng Hai, Linyi Bian, Jiangsheng Yu, Fujun

Zhang, Zhongsheng Xu, Wanli Ma and Weihua Tang

Table of Contents

1. Synthesis of monomers	S2
2. NMR Spectra	S6
3. Thermal properties of polymers and electrochemical calculation	S13
4. Complete PSC devices data	S13

1. Synthesis of momoners

All chemicals and solvents were purchased from Sigma-Aldrich Co. and used without further purification. Toluene, THF, dichloromethane and diethyl ether were freshly distilled before use. The monomers DTBTQx,^[1] DTBO^[2] and TPD^[3] were synthesized according to the procedures in literature illustrated in Scheme S1.

Scheme S1. Synthesis of monomers DTBO, DTBTQx and TPD.

1,2-Dinitro-4,5-bis(octyloxy)benzene (3). 65% HNO₃ was added dropwise to a 10°C cooled mixture solution of 1,2-bis(octyloxy)benzene (10 g, 29.9 mmol), CH₂Cl₂ (140 mL) and AcOH (140 mL). The reaction mixture was warmed to rt and stirred for 1 h. The mixture was then cooled to 10°C before fuming HNO₃ (50 mL) was added. Before being poured into ice-water, the mixture was warmed to room temperature and stirred for 40 h. The CH₂Cl₂ layer was separated and the aqueous phase extracted with CH₂Cl₂. The organic phases were combined, washed sequentially with water, sat. NaHCO₃ (aq), and brine, then over dried with MgSO₄ and concentration. The crude product was recrystallized from EtOH. Yield: 10 g (80%), yellow solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.29 (s, 2H), 4.10 (t, *J* = 6.5 Hz, 4H), 1.91–1.83 (m, 4H), 1.52–1.43 (m, 4H), 1.38-1.26 (m, 16H), 0.89 (t, *J* = 6.9 Hz, 6H).

5,6-Bis(octyloxy)benzo[c][1,2,5]oxadiazole (4). Compound **3** (1.7 g, 4 mmol), NaN₃ (1.3 g, 20 mmol), and *n*-Bu₄NBr (260 mg, 0.8 mmol) was added in 20ml toluene and refluxed for 12h. Then PPh₃ (1.26 g, 4.8 mmol) was added and the S2 mixture heated under reflux for an additional 24 h. The reaction system was cooled to room temperature and filtered through a short silica plug; the solvent was removed by pressure evaporation and an off-white solid was obtained. The final solid was recrystallized in ethanol, and yielded 1.3 g (60%) of the target compound 5. ¹H NMR (500 MHz, CDCl₃) δ : 6.80 (s, 2H), 4.06 (t, *J* = 6.5 Hz, 4H), 1.92–1.86 (m, 4H), 1.50–1.47 (m, 4H), 1.37–1.27 (m, 16H), 0.89 (t, *J* = 6.7 Hz, 6H).

4,7-Dibromo-5,6-bis(octyloxy)benzo[c][1,2,5]oxadiazole (5). Br₂ (0.85 mL, 16.6 mmol) were added sequentially to a solution of compound **4** (1.5 g, 4.0 mmol) in CH₂Cl₂ (80 mL) and AcOH (10 mL). The resulting mixture was stirred for 3 days at room temperature and then poured into then poured into aqueous NaOH solution (10 g in 200 mL). The aqueous phase was extracted with CH₂Cl₂; the combined organic extracts were washed with brine and concentrated under reduced pressure and purified through column chromatography on silica gel eluting with dichloromethane: petroleum ether (1:9, v/v) to yield a white solid 6 (2.0 g, 72%). ¹H NMR (500 MHz, CDCl₃) δ : 4.15 (t, *J* = 6.6 Hz, 4H), 1.90–1.82 (m, 4H), 1.53–1.47 (m, 4H), 1.40–1.27 (m, 16H), 0.90 (t, *J* = 6.5 Hz, 6H).

5,6-Bis(octyloxy)-4,7-di(thien-2-yl)benzo[c][1,2,5]oxadiazole (6). Compound **5** (665 mg, 1.25 mmol), Pd₂(dba)₃ (46 mg, 0.05 mmol), tri-o-tolylphosphine (122 mg, 0.40 mmol) and 2-tributylstannylthiophene (994 μ L, 3.13 mmol) was added into a round bottom flask purged with nitrogen. Dry toluene (10 mL) was then added to leave the reaction mixture heated under reflux for 16 h under N₂. The reaction mixture was concentrated directly under vacuum, and purified by column chromatography on silica gel eluting with chloroform: petroleum ether (1:10, v/v) afforded the title product as a yellow solid (470 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ : 8.46 (dd, *J* = 3.8, 1.1 Hz, 2H), 7.50 (dd, *J* = 5.1, 1.0 Hz, 2H), 7.22 (dd, *J* = 5.1, 3.9 Hz, 2H), 4.15 (t, *J* = 7.3 Hz, 4H), 2.02–1.97 (m, 4H), 1.46–1.43 (m, 4H), 1.33–1.22 (m, 16H), 0.90 (t, *J* = 7.0 Hz, 6H).

4,7-Bis(5-bromothien-2-yl)-5,6-bis(octyloxy)benzo[c][1,2,5]oxadiazole

(DTBO).^[1] NBS (533 mg, 3 mmol) was added in one portion to a solution of **6** (810 mg, 1.5 mmol) in CHCl₃ (45 ml) and glacial AcOH (45 mL) and then the mixture was stirred at room temperature for 20 h in the dark. The reaction mixture was concentrated directly onto Celite under vacuum, and purified by column chromatography on silica gel eluting with chloroform:petroleum ether (1:9, v/v) to

afford **M3** as an orange solid (1.4 g, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ : 8.25 (d, J = 4.2 Hz, 2H), 7.17 (d, J = 4.1 Hz, 2H), 4.15 (t, J = 7.3 Hz, 4H), 2.02-1.96 (m, 4H), 1.51-1.43 (m, 4H), 1.39-1.26 (m, 16H), 0.90 (t, J = 6.9 Hz, 6H).

6,7-Bis(3,4-bis(dodecyloxy)phenyl)-4,9-bis(5-bromothiophen-2-yl)-[1,2,5] thiadiazolo[3,4-g]quinoxaline (**DBTQx**). To а solution of 6,7-bis(3,4bis(dodecyloxy)-phenyl)-4,9-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]-quinoxaline (534 mg, 0.43 mmol) in anhydrous THF (100 mL) was added with Nbromosuccinimide (NBS) (168 mg, 0.95 mmol) in one portion. The mixture was stirred in the dark at 0°C overnight. The mixture was then poured into water and extracted with extracted by CH₂Cl₂. The organic layer was concentrated via rotary evaporation. The crude residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether, 1:20 v/v) to give pure DTBTQx as a purple black solid (538 mg, 89%). ¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, J = 4.2 Hz, 2H), 7.69 (d, J = 1.4 Hz, 2H), 7.13 (d, J = 4.2 Hz, 2H), 7.05 (dd, J = 8.3, 1.6 Hz, 2H), 6.78 (d, J = 8.4Hz, 2H), 4.17 (t, J = 6.3 Hz, 4H), 4.06 (t, J = 6.5 Hz, 4H), 1.95-1.84 (m, 8), 1.61-1.48 (m, 8H), 1.44 - 1.20 (m, 64H), 0.92-0.85 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 152.77, 150.79, 150.61, 149.10, 137.15, 133.51, 132.88, 130.32, 129.31, 124.56, 119.89, 115.41, 111.95, 69.37, 69.07, 31.94, 29.71, 29.39, 26.34, 26.13, 25.99, 22.69, 14.10.

2. NMR spectra

Figure S1. ¹H NMR spectrum of compound 1.

Figure S2. ¹H NMR spectrum of compound 2.

Figure S3. ¹³C NMR spectrum of compound 2.

Figure S6. ¹H NMR spectrum of M1.

Figure S7. ¹³C NMR spectrum of M1.

Figure S9. ¹H NMR spectrum of compound 5.

Figure S11. ¹H NMR spectrum of compound 7.

Figure S14. ¹H NMR spectrum of PBDT-DTBTQx.

Figure S15. ¹H NMR spectrum of PBDT-TPD.

3. Thermal properties of polymers and electrochemical calculation

Fig.S16. TGA traces of polymers at heating rate of 10°C/min under an inert atmosphere.

The potential of ferrocene 0.40 V vs SCE is used as internal standard. According to the following equations we calculate the HOMO level of the polymers from the onset oxidation potentials (E_{ox}^{onset}) and the LUMO levels using HOMO and E_{g}^{opt} , on the basis of 4.8 eV below vacuum for the energy level of Fc/Fc⁺.

HOMO = $-e(E_{ox}^{onset} + 4.4)$ (eV);

 $LUMO = HOMO + E_{g}^{opt} (eV)$

4. Complete PSC devices data

•

	ST Thorovoltate per	lonnui				
Polymer:PCBM	Processing solvent	D/A	$V_{oc}[V]$	J_{sc} [mA/cm ²]	FF [%]	PCE [%] ^g
PBDT-DTBTQx/PC ₆₁ BM						
	o-DCB	1:1	0.45	0.90	53.6	0.22 (0.21±0.01)
	o-DCB	4:5	0.48	0.95	53.3	0.24 (0.23±0.01)
	o-DCB +1%DIO	4:5	0.45	1.00	50.1	0.23 (0.21±0.02)
	CF+1%DIO	4:5	0.46	0.92	49.1	0.21 (0.20±0.01)
PBDT-TPD/PC61BM						
	CF	1:1	0.64	3.11	41.4	0.82 (0.80±0.02)
	CF+3%DIO	1:1	0.74	2.85	38.7	0.82 (0.81±0.01)
	CF+3%DIO ^a	1:1	0.65	1.99	52.8	0.68 (0.67±0.01)
	$CF+3\% DIO^b$	1:1	0.76	1.65	47.7	0.60 (0.59±0.01)
	CF+3%DIO ^c	1:1	0.75	3.00	41.2	0.93 (0.91±0.02)
	CF+5%DIO	1:1	0.78	2.02	38.4	0.61 (0.60±0.01)
	CF+3%DIO	3:2	0.75	2.12	38.4	0.61 (0.60±0.01)
	o-DCB+1%DIO	1:1	0.78	2.08	32.6	0.53 (0.52±0.01)
	o-DCB+3%DIO	1:1	0.80	4.95	32.2	1.28 (1.26±0.03)
PBDT-DTBO/PC ₆₁ BM						
	CF	1:1	0.83	7.38	59.5	3.64 (3.60±0.04)
	CF ^a	1:1	0.83	8.13	62.9	4.24 (4.19±0.05)
	CF^b	1:1	0.81	6.35	55.9	2.87 (2.83±0.04)
	CF^{e}	1:1	0.83	7.38	47.3	2.90 (2.84±0.07)
	$\mathrm{CF}^{a,c}$	1:1	0.80	8.10	59.8	3.88 (3.82±0.06)
	CF+3%DIO	1:1	0.80	6.27	46.1	2.31 (2.28±0.05)
	CF+3%DIO	1:2	0.74	6.08	40.8	1.84 (1.81±0.04)
	$CF+3\% DIO^d$	1:1	0.70	4.62	44.5	1.44 (1.42±0.02)
	o-DCB+1%DIO	1:1	0.73	5.77	39.3	1.66 (1.62±0.04)
	CB+1%DIO	1:1	0.77	4.21	43.9	1.42 (1.39±0.03)
PBDT-DTBO/PC71BM						
	CF	1:1	0.70	12.77	45.1	4.03 (3.98±0.05)
	CF^{c}	1:1	0.73	13.75	44.9	4.51 (4.46±0.06)
	CF+1%DIO ^c	1:1	0.83	10.24	66.3	5.63 (5.52±0.12)
	CF+1%DIO ^f	1:1	0.83	9.69	66.5	5.35 (5.25±0.10)
	CF+3%DIO	1:1	0.84	9.41	58.8	4.65 (4.59±0.06)
	CF+5%DIO	1:1	0.84	8.63	57.2	4.15 (4.12±0.04)
	CF+1%DIO	1:2	0.81	8.27	66.2	4.43 (4.38±0.05)
	CF+3%DIO	1:2	0.81	9.34	66.5	5.03 (4.98±0.06)
	CF+1%DIO	1:3	0.81	6.60	59.2	3.16 (3.14±0.02)
	CF+1%DIO ^c	1:3	0.81	6.83	60.9	3.37 (3.34±0.03)

Table S1 Photovoltaic performance of polymer:PCBM devices

^{*a*}annealing at 50°C, ^{*b*}annealing at 100°C, ^{*c*}spin-coating at 1200 rpm, ^{*d*}spin-coating at 1300 rpm, ^{*e*}concentration at 30 mg/mL, ^{*f*}spin-coating at 1500 rpm, ^{*g*}values in parenthesses are avaerage values and variances of 20 devices.

References

- [1] Hai, J.; Yu, W.; Zhu, E.; Bian, L.; Zhang, J.; Tang, W. *Thin Solid Films* 2014, 562, 75-83.
- Jiang, J-M.; Yang, P-A.; Chen, H-C.; Wei, K-H. Chem. Commun. 2011, 47, 8877-88979.
- [3] Zhu, E.; Ni, B.; Zhao, B.; Hai, J.; Bian, L.; Wu, H.; Tang, W. Macromol. Chem. Phys. 2014, 215, 227.