
APPENDIX A

A STATISTICAL MECHANICAL MODEL FOR THERMODYNAMIC CORRECTION 
FACTOR

We present a statistical mechanical model for Eq.\* MERGEFORMAT (19). We start by 

writing the microscopic definition of the chemical potential. 
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where U  is the total potential energy function of the system,   is the thermal wave length, 

and NR  denotes the full set of molecular coordinate of an N  particle system. The factor 

1 Bk T    with Bk  being the Boltzmann constant. Then, by inverting Eq. 5 we obtain 
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where the dependency on 0  and   have been adsorbed into the constant 
0 3exp( )v     . For an ideal gas 0U  ,  and therefore 
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where we used the ideal gas law on the form BPV Nk T . For the adsorbed  layer we  now 

consider two approximate models. The simplest model, the one obeying Henry’s law, implies 

that adsorption is proportional to the gas pressure. The model describing this assumes that 

each molecule that adsorbs reduces the total energy by adsorption energy aE  irrespective of 

the occupancy of the surface. In other words, in the adsorption layer aU NE   which gives 
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with sC N V   where N  and V  are the number in and volume of the surface layer. 

The second model is  the Langmuir model where particles are adsorbed on vacancy sites that 

can only be singly occupied. As derived in ref 7, the chemical potential and activity of this 

model is given by 
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where vacV  is the volume of the vacancy pocket. Now, since the activity ,0s sa C C  . with 

the standard state  concentration 0sC   corresponding to the concentration of maximum 

occupancy, we can write the activity coefficient a    or for both cases:
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Now, let us consider   of the adsorption layer that is in contact with a gas 
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where the grand canonical ensemble average is defined as 
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with the probability distribution ( ) ( )( ) ( )
N NN W R N W R NR e e N e P N         . This 

implies for the Henry model that 
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Where we used exp( )N
N
x N x   , exp( )N

N
Nx N x x   , and 

2 ( 1)exp( )N
N
N x N x x x    . We used P  for the gas pressure while V  and N  are 

properties of the adsorption layer. By introducing these expressions into the relation A7  we 

obtain 
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This is expected from Eq. \* MERGEFORMAT (19). For the Langmuir model, we replace 



the integral by vac ( 1) ( 1)NV M M … M N    as in ref 7. Then, by using the definition of the 

binomial coefficients we can write 
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By introducing  these expressions, we obtain 
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We can relate this to the Langmuir constant as ads
vac

EL
i gK V e    which gives

 

1L
i gK P   (A13)

Finally, by substitution of the inverse Langmuir equation (1 )L
i gP K     we end up at 

Eq. \* MERGEFORMAT (19). 

APPENDIX B 

LANGMUIR AND HENRY EQUILIBRIUM CONSTANTS FROM SIMULATION DATA



Figure S1. Adsorption isotherm of the first (a) and second layer (b) as funciton of pressure at different 
temperatures. The straigh lines are fitted with Langmuir (layer 1) and Henry (layer 2) isotherms.

Figure S2. Adsorption isotherms valid for the  first and second layers (a), and for the  total layer and 
the gas  (b) at different temperatures. The straight line is obtained from fits with a Langmuir isotherm .



Figure S3. Thermodynamic correction factors for  CO2 adsorbed on a graphite surface as a function of 
gas pressure at different temperatures (a). The slope of the fitted line is the Langmuir constant (see 
Appendix, equation A13). (b) The linear fit of the natural logarithm of the Langmuir constant to  the 
inverse temperature, gives the energy  of adsorption. The value -Eads= H = -12.8 kJ/mol from the slope.


