Electronic Supplementary Information

Towards efficient photoinduced charge separation in carbon nanodots and TiO₂ composites in visible region

Mingye Sun,^{*ab*} Songnan Qu,^{*a*} Wenyu Ji,^{*a*} Pengtao Jing,^{*a*} Di Li,^{*a*} Li Qin,^{*a*} Junsheng Cao,^{*a*} Hong Zhang,^{*c*} Jialong Zhao^{*a*} and Dezhen Shen^{*a*}

^{*a*} State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun Jilin 130033, China

^b University of Chinese Academy of Sciences, Beijing 100039, China

^c Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098
XH Amsterdam, The Netherlands

E-mail:qusn@ciomp.ac.cn, shendz@ciomp.ac.cn

Characterization

The UV-Vis absorption spectra of CDs-V in water and CdSe/ZnS core/shell QDs in toluene were recorded on a UV-3101PC UV-Vis-NIR scanning spectrophotometer (Shimadzu). The mass extinction coefficients of the CDs-V and CdSe/ZnS core/shell QDs were calculated using Lambert-Beer's law: $A = \varepsilon CL$. A is the absorbance of sample solution. C (g/L) is the mass concentration. L (cm) is the path length of radiation beam across the sample solution in quartz cuvette, which is 1 cm. ε (cm⁻¹(g/L)⁻¹) is the mass extinction coefficient. The PL spectra were recorded by a Hitachi F-7000 spectrophotometer. The diffuse reflectance spectra were also measured by Hitachi F-7000 spectrophotometer with an integrating sphere scanning from 200-700 nm with BaSO₄ as the reference. The morphology of CDs-V/TiO₂ composites was measured by a Philips TECNAI G2 transmission electron microscope. The time-resolved PL spectra were measured by a LifeSpec-II dedicated lifetime spectrometer (Edinburgh Instruments). The excitation source was picosecond pulsed diode laser with a laser wavelength of 405 nm. The real-time monitoring of the characteristic absorption peak of RhB was managed using the absorbance mode of USB4000-UV-VIS Spectrometer with reference light from Ocean Optics HL-2000 light source. 510 nm cut-off filter was equipped on the light source to prevent the excitation of CDs-V and CDs-U. The pH values of the RhB and mixed solutions of RhB with CDs-V, TiO₂, CDs-U/TiO₂ and CDs-V/TiO₂ composites were measured by PHS-3C pH meter. The illumination intensity at the solution surface was measured by an Ophir LaserStar laser power meter with a 3A laser sensor. The IPCE spectra of CD-sensitized solar cells were measured by a Keithley 2000 multimeter with illumination by a 300 W tungsten lamp with a Spectral Product DK240 monochromator. Three cells were constructed and evaluated in parallel.

Fig. S1 Optical images of pure TiO_2 (a) and CDs-V/TiO₂ composites (b).

Fig. S2 The normalized absorption spectra of RhB solution (a) and RhB solutions mixed with CDs-V (b), pure TiO_2 (c), CDs-U/TiO₂ (d) and CDs-V/TiO₂ composites (e) after different visible light irradiation time. (f) Normalized UV-Vis absorption spectra of CDs-U and CDs-V.