Supporting Information

β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes

Michał Maj, ${ }^{\ddagger a b}$ Changwoo Ahn, ${ }^{\ddagger b}$ Dorota Kossowska, ${ }^{\text {ab }}$ Kwanghee Park, ${ }^{\text {ab }}$ Kyungwon Kwak, ${ }^{\text {c }}$ Hogyu Han*b and Minhaeng Cho*ab
${ }^{a}$ Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 136-701, Korea
${ }^{b}$ Department of Chemistry, Korea University, Seoul 136-701, Korea
${ }^{c}$ Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea

S1. Syntheses of compounds

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Varian Unity Inova 500 NMR spectrometer. Chemical shifts (δ) and coupling constants (J) are reported in parts per million (ppm) and hertz (Hz), respectively. ${ }^{1} \mathrm{H}$ NMR spectra are referenced to TMS (tetramethylsilane in CDCl_{3} and DMSO- d_{6}) as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra are referenced to solvent ($\left.{ }^{13} \mathrm{C}: \mathrm{CDCl}_{3}, \delta 77.00 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}, \delta 39.50 \mathrm{ppm}\right)$ as an internal standard. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 mass spectrometer using a chemical ionization (CI) technique. Thin-layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}_{254}$ precoated plates (0.25 mm thickness, Merck, Darmstadt). Flash chromatography was carried out on silica gel 60 (230-400 mesh, Merck). Reagentgrade chemicals were purchased from Aldrich and TCI and used as received unless otherwise specified. Compounds $\mathbf{0}(\mathrm{Ac}-\mathrm{L}-\mathrm{Ala}-\mathrm{NHMe})^{\mathrm{S} 1}$ and $\mathbf{3}\left(\mathrm{Ac}-\mathrm{L}-\mathrm{Ala}\left(\mathrm{N}_{3}\right)-\mathrm{NHMe}\right)^{\mathrm{S2}}$ were prepared as reported previously.

Ac-L-Dap(Boc)-OMe (5). ${ }^{\text {S2 }}$ To a suspension of 4- HCl ($\mathrm{H}-\mathrm{Dap}(\mathrm{Boc})-\mathrm{OMe} \cdot \mathrm{HCl}, 3.00 \mathrm{~g}$, 11.8 mmol , Bachem, Bubendorf) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added triethylamine ($5.0 \mathrm{~mL}, 35.9$ $\mathrm{mmol})$ and acetic anhydride ($5.5 \mathrm{~mL}, 58.3 \mathrm{mmol}$). After stirring at room temperature for 3 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times$ 2). The combined organic layers were washed with brine ($100 \mathrm{~mL} \times 1$), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 10\right)$ to give $5(2.98 \mathrm{~g}, 97 \%)$ as a colorless oil. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 20\right) R_{\mathrm{f}}=0.34 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{td}, J=6.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dt}, J=14.5,7.1 \mathrm{~Hz}$, 1 H), $3.51(\mathrm{dt}, J=14.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.91,170.32,156.65,80.07,53.71,52.67,42.10,28.23,23.05$; HRMS (CI+) for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}\left(M \mathrm{H}^{+}\right)$, calcd 261.1450, found 261.1453.

Ac-L-Dap-OMe (6). ${ }^{\text {S2 }}$ To $5(2.87 \mathrm{~g}, 11.0 \mathrm{mmol})$ was added trifluoroacetic acid (TFA, 15 mL). After stirring at room temperature for 1 h , the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 5\right)$ to give 6-TFA ($2.83 \mathrm{~g}, 94 \%$) as a colorless oil. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 7\right.$ on a plate pretreated with triethylamine) $R_{\mathrm{f}}=0.40 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.12 (brs, 2H), 4.55 (td, $J=8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (s, 3H), 3.23 (dd, $J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$),
$3.06(\mathrm{dd}, J=13.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 170.16$, 169.69, 52.43, 49.93, 39.26, 22.48; HRMS (CI+) for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}\left(M \mathrm{H}^{+}\right)$, calcd 161.0926, found 161.0929 .

Ac-L-Dap(CHO)-OMe (7). ${ }^{\text {S3 }}$ To a suspension of 6-TFA ($2.0 \mathrm{~g}, 7.29 \mathrm{mmol}$) in THF (100 mL) were added sodium formate ($520 \mathrm{mg}, 7.65 \mathrm{mmol}$) and 2,2,2-trifluoroethyl formate (TFEF, $2.13 \mathrm{~mL}, 21.9 \mathrm{mmol}$). After stirring at room temperature for 48 h , the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 10\right)$ to give $7(1.08 \mathrm{~g}, 79 \%)$ as a colorless oil. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10\right) R_{\mathrm{f}}=0.42 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two rotamers at $25^{\circ} \mathrm{C}(4.8: 1)$, major rotamer $\delta 8.19(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{dt}, J=7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, minor rotamer $\delta 7.93(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=11.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.75(\mathrm{dt}, J=7.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dt}, J=13.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=13.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major rotamer $\delta 170.85,170.58$, 162.21, 52.96, 52.87, 40.18, 23.01, minor rotamer $\delta 170.55,170.40,165.36,53.07,53.03$, 43.39, 22.84; HRMS (CI+) for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}\left(M \mathrm{H}^{+}\right)$, calcd 189.0875, found 189.0873.

Ac-L-Ala(NC)-OMe (8). ${ }^{54}$ To a solution of $7(973 \mathrm{mg}, 5.17 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added triethylamine ($3.6 \mathrm{~mL}, 25.8 \mathrm{mmol}$) under Ar. The resulting mixture was cooled to $-30^{\circ} \mathrm{C}$ and a solution of phosphorus(V) oxychloride ($0.72 \mathrm{~mL}, 7.72 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added dropwise over 30 min with stirring. After stirring at $-30^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with cold saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, warmed to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine $(100 \mathrm{~mL} \times 1)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 50$) to give $\mathbf{8}$ (448 $\mathrm{mg}, 51 \%)$ as a white solid. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 20\right) R_{\mathrm{f}}=0.39 ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dt}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=15.3,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{dd}, J=15.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.17,168.67,159.53(\mathrm{t}, J=3.8 \mathrm{~Hz}), 53.42,51.49,43.52(\mathrm{t}, J=6.2 \mathrm{~Hz}), 22.94$; HRMS $(\mathrm{CI}+)$ for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\left(M \mathrm{H}^{+}\right)$, calcd 171.0770, found 171.0768.

Ac-L-Ala(NC)-NHMe (1). ${ }^{\text {S5 }}$ To $\mathbf{8}(301 \mathrm{mg}, 1.77 \mathrm{mmol})$ was added methylamine solution $(40 \%$ in $\mathrm{MeOH}, 2.8 \mathrm{~mL}, 36.1 \mathrm{mmol})$. After stirring at room temperature for 4 h , the reaction
mixture was concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 10\right)$ to give $\mathbf{1}(213 \mathrm{mg}, 71 \%)$ as a white solid. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 10\right) R_{\mathrm{f}}=0.48 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{td}, J=7.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=14.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dd, $J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.90 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 169.68,168.21,157.44(\mathrm{t}, J=3.9 \mathrm{~Hz}), 51.38,42.84(\mathrm{t}, J=5.8 \mathrm{~Hz}), 25.69,22.50$; HRMS (CI+) for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\left(M \mathrm{H}^{+}\right)$, calcd 170.0930, found 170.0928.

Boc-L-Ala(CN)-OMe (10). ${ }^{\text {S6 }}$ To a solution of 9 (Boc- β-cyano-Ala-OH, $3.00 \mathrm{~g}, 14.0$ mmol, Bachem, Bubendorf) in DMF (20 mL) was added potassium carbonate ($1.93 \mathrm{~g}, 14.0$ $\mathrm{mmol})$ and then slowly iodomethane ($3.5 \mathrm{~mL}, 56.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 12 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with EtOAc ($200 \mathrm{~mL} \times 2$). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL} \times 1)$ and brine $(200 \mathrm{~mL} \times 1)$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc / n-hexane $=1: 5-1: 2$) to give $\mathbf{1 0}$ $(2.68 \mathrm{~g}, 84 \%)$ as a white solid. TLC (EtOAc$/ n$-hexane $=1: 2) R_{\mathrm{f}}=0.46 ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=$ $17.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.36,154.77,116.12,81.02,53.34,50.26,28.19,21.87$; HRMS (CI+) for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(M \mathrm{H}^{+}\right)$, calcd 229.1188, found 229.1192.

H-L-Ala(CN)-OMe (11). ${ }^{\text {S7 }}$ To $\mathbf{1 0}(2.50 \mathrm{~g}, 11.0 \mathrm{mmol})$ was added hydrogen chloride solution (4.0 M in 1,4-dioxane, $30 \mathrm{~mL}, 120 \mathrm{mmol}$). After stirring at room temperature for 1 h , the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 10\right)$ to give $11-\mathrm{HCl}(1.66 \mathrm{~g}, 92 \%)$ as a colorless oil. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 20\right) R_{\mathrm{f}}=0.52 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81$ (dd, $J=7.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.81 (brs, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.50,116.82,52.84,51.17,23.79$; HRMS (CI+) for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\left(M \mathrm{H}^{+}\right)$, calcd 129.0664, found 129.0662.

Ac-L-Ala(CN)-OMe (12). ${ }^{\mathrm{S} 2}$ To a suspension of $\mathbf{1 1 - H C l}(1.29 \mathrm{~g}, 7.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ were added triethylamine $(3.3 \mathrm{~mL}, 23.7 \mathrm{mmol})$ and acetic anhydride $(3.7 \mathrm{~mL}, 39.2$ $\mathrm{mmol})$. After stirring at room temperature for 2 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 2)$. The combined organic layers were
washed with brine ($100 \mathrm{~mL} \times 1$), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 20\right)$ to give $\mathbf{1 2}$ (626 mg , $47 \%)$ as a white solid. $\operatorname{TLC}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 20\right) R_{\mathrm{f}}=0.52 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dt}, J=6.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=17.0,5.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.96 (dd, $J=16.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.27$, 169.28, 116.12, 53.43, 49.00, 22.88, 21.26; HRMS (CI+) for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\left(M \mathrm{H}^{+}\right)$, calcd 171.0770, found 171.0769.

Ac-L-Ala(CN)-NHMe (2). ${ }^{55}$ To $\mathbf{1 2}(379 \mathrm{mg}, 2.23 \mathrm{mmol})$ was added methylamine solution $(40 \%$ in $\mathrm{MeOH}, 3.5 \mathrm{~mL}, 45.1 \mathrm{mmol})$. After stirring at room temperature for 1 h , the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 100-1: 10$) to give 2 ($329 \mathrm{mg}, 87 \%$) as a white solid. TLC $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 20\right) R_{\mathrm{f}}=0.28 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 6.85 (brs, 1H), 4.84 (dt, $J=8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=17.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (d, J $=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=17.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.77,168.94,116.81,49.24,26.48,23.02$, 21.12; HRMS (CI+) for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$, calcd 170.0930, found 170.0930.

S2. Wobbling-in-a-cone model ${ }^{\mathrm{S} 8, S 9}$

To extract detailed information on restricted orientational motion from biexponential anisotropy decay, the experimentally measured orientational relaxation lifetimes are analysed by a wobbling-in-a-cone model. The long time component is associated with full orientational randomization, whereas the short time component results from restricted wobbling motion, with the transition dipoles undergoing orientational diffusion within a cone of semiangle θ_{c}. The anisotropy decay within the wobbling-in-a-cone model is given as

$$
\begin{equation*}
r(t)=0.4\left[Q^{2}+\left(1-Q^{2}\right) \exp \left(-t / \tau_{\mathrm{w}}\right)\right] \exp \left(-t / \tau_{1}\right) \tag{S1}
\end{equation*}
$$

where $Q^{2}\left(0 \leq Q^{2} \leq 1\right)$ is the generalized order parameter describing the degree of restriction on the orientational diffusion, and τ_{w} and τ_{1} are time constant for the restricted (fast) and complete relaxation, respectively. The τ_{w} time constant is determined from the experimentally measured orientational relaxation lifetimes as

$$
\begin{equation*}
\tau_{\mathrm{w}}=\left(\tau_{\mathrm{or} 2}^{-1}-\tau_{\mathrm{or} 1}^{-1}\right)^{-1} \tag{S2}
\end{equation*}
$$

Note that for $Q^{2}=1$, the equation simplifies to a single exponential decay with long time component τ_{1}, whereas for $Q^{2}=0$ the orientational motion is fully restricted, and complete randomization occurs mostly due to the wobbling motion since $\tau_{1}>\tau_{\mathrm{w}}$. The parameter Q^{2} is related to the cone semiangle by the following formula:

$$
\begin{equation*}
Q^{2}=\left[0.5 \cos \theta_{\mathrm{c}}\left(1+\cos \theta_{\mathrm{c}}\right)\right]^{2} \tag{S3}
\end{equation*}
$$

The wobbling-in-a-cone diffusion constant can be then calculated by

$$
\begin{align*}
D_{\mathrm{w}}= & \frac{x_{\mathrm{w}}^{2}\left(1+x_{\mathrm{w}}\right)^{2}\left\{\ln \left[\left(1+x_{\mathrm{w}}\right) / 2\right]+\left(1-x_{\mathrm{w}}\right) / 2\right\}}{\tau_{\mathrm{w}}\left(1-Q^{2}\right)\left[2\left(x_{\mathrm{w}}-1\right)\right]}+ \\
& \frac{\left(1-x_{\mathrm{w}}\right)\left(6+8 x_{\mathrm{w}}-x_{\mathrm{w}}^{2}-12 x_{\mathrm{w}}^{3}-7 x_{\mathrm{w}}^{4}\right)}{24 \tau_{\mathrm{w}}\left(1-Q^{2}\right)} \tag{S4}
\end{align*}
$$

where $x_{\mathrm{w}}=\cos \theta_{\mathrm{c}}$. The diffusion constant of slow, complete orientational randomization can be calculated by

$$
\begin{equation*}
D_{1}=\frac{1}{6 \tau_{\text {orl }}} \tag{S5}
\end{equation*}
$$

Table S1 Vibrational properties of the NC stretching mode of $\mathbf{1}$ in various solvents ${ }^{a}$

Solvent	$\omega_{1}\left(\mathrm{~cm}^{-1}\right)$	$\mathrm{FWHM}^{b}\left(\mathrm{~cm}^{-1}\right)$	$\omega_{2}\left(\mathrm{~cm}^{-1}\right)$	$\mathrm{FWHM}^{b}\left(\mathrm{~cm}^{-1}\right)$
DMF	2148.4	10.7	-	-
THF	2148.7	9.6	-	-
MeOH	2150.2	10.3	2172.7	18.5
MeOAc	2151.0	10.0	-	-
CHCl_{3}	-	-	2154.0	17.4
$\mathrm{D}_{2} \mathrm{O}$	-	-	2169.5	24.1
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	2152.6	14.6	2183.8	22.0

${ }^{a}$ Fitting parameters obtained from Fig. 2. ${ }^{b}$ Full width at half-maximum

Table S2 Amide I band properties of $\mathbf{0}-\mathbf{3}$ in $\mathrm{D}_{2} \mathrm{O}^{a}$

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\omega_{\text {center }}\left(\mathrm{cm}^{-1}\right)$	1635.8	1650.0	1651.3	1642.7
FWHM $^{b}\left(\mathrm{~cm}^{-1}\right)$	37.7	39.2	42.5	39.7

${ }^{a}$ Fitting parameter obtained from Fig. 3a. ${ }^{b}$ Full width at half-maximum.

Table S3 Wobbling-in-a-cone model analysis results for the biexponential anisotropy decay of $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}^{a}$

Q	$\theta_{\mathrm{c}}\left({ }^{\circ}\right)$	$\tau_{\mathrm{w}}(\mathrm{ps})$	$\tau_{1}(\mathrm{ps})$	$D_{\mathrm{w}}{ }^{-1}(\mathrm{ps})$	$D_{1}{ }^{-1}(\mathrm{ps})$
0.53	36.5	0.55	10.3	5.3	61.8

${ }^{a}$ See eqn (S1)-(S5) in Section S1 of the ESI. \dagger

Fig. S1 Kamlet-Taft plot for 1. The frequency and full width at half-maximum (FWHM) of the NC stretching mode are plotted against the Kamlet-Taft solvent parameter α^{510} for H bond donor strength.

Fig. S2 Factor analyses of the azido $\left(\mathrm{N}_{3}\right)$ FTIR spectra of $\mathbf{3}$ in DMF (a) and $\mathrm{D}_{2} \mathrm{O}$ (b). The azido FTIR spectra, which are taken from Fig. 3d, can be fitted to two Voigt functions. Asymmetry in the high frequency region is observed regardless of the solvent used.

Fig. S3 Isotropic IR pump-probe spectra of 1 in $\mathrm{D}_{2} \mathrm{O}$ at short (0.5 ps) and long (70 ps) delay times.

Fig. S4 Time- and frequency-resolved isotropic IR pump-probe signals at the delay time t for $\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}$ (upper) and DMF (lower) before (left) and after (right) subtraction of the heat contribution. Fig. S4b and d were used to obtain Fig. 5.

References

S1 K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han and M. Cho, ChemPhysChem., 2007, 8, 2218-2226.

S2 K.-I. Oh, J.-H. Lee, C. Joo, H. Han and M. Cho, J. Phys. Chem. B, 2008, 112, 10352-10357.

S3 D. R. Hill., C.-N. Hsiao, R. Kurukulasuriya and S. J. Wittenberger, Org. Lett., 2002, 4, 111-113.

S4 G. Zhao, C. Bughin, H. Bienaymé and J. Zhu, Synlett, 2003, 1153-1154.
S5 G. A. Reichard, C. Stengone, S. Paliwal, I. Mergelsberg, S. Majmundar, C. Wang, R. Tiberi, A. T. McPhail, J. J. Piwinski and N.-Y. Shih, Org. Lett., 2003, 5, 4249-4251.

S6 D. Kand, D. P. Chauhan, M. Lahiri and P. Talukdar, Chem. Commun., 2013, 49, 3591-3593.

S7 A. J. Pearson and D. V. Ciurea, J. Org. Chem., 2008, 73, 760-763.
S8 S. Park, D. E. Moilanen and M. D. Fayer, J. Phys. Chem. B, 2008, 112, 5279-5290.
S9 G. Lipari and A. Szabo, Biophys. J., 1980, 30, 489-506.
S10 M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877-2887.

