Electronic Supplementary Information

Enhanced Field Emission from In-situ Synthesized 2D Copper Sulfide Nanoflakes at Low Temperature by Using a Novel Controllable Solvothermal Preferred Edge Growth Route

Zengcai Song ^{a,b}, Hongwei Lei^a, Borui Li^a, Haoning Wang^a, Jian Wen^a, Songzhan Li^a, Guojia Fang ^{a,b *}

^a Department of Electronic Science and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

^b Suzhou Institute of Wuhan University, Suzhou, 215123, P. R. China

*E-mail: gjfang@whu.edu.cn

Fig. S1 Schematic diagram of the experimental setup for two-parallel-plate

configuration for field emission test

Fig. S2 EDS spectra of samples Cu_30s, Cu_60s, Cu_90s, Cu_120s and Cu_150s. The

atomic ratio of Cu and S elements is also shown in it.

Fig. S3. Raman spectra of the 2D CuS nanoflakes on Si substrate. The curves are corresponding to the samples Cu_60s, Cu_90s, Cu_120s and Cu_150s from bottom to top, respectively.