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1. Smoothed and Long-range TB-SMA Potential

Based on the concept of local electron density, significant progress in realistic 

potentials has been made during the 1980s by developing the so-called many-body, or 

n-body potentials, such as second-moment approximation of tight-binding (TB-SMA) 

potential,1-3 Finnis-Sinclair (FS) potential,4 embedded-atom method (EAM) potential 

and their various modifications.5-7 By rule of thumb, these various n-body potentials 

are suitable for systems of different characteristics. For example, it has been shown 

that the EAM and F-S potentials are applicable to fcc and bcc metals, while the TB-

SMA potential is more suitable for fcc and hcp metals.

The TB-SMA potential was first proposed by Tomanek and Rosato.1 According 

to the TB-SMA scheme, the energy of the d band is proportional to the square root of 

the second moment of the density of states, while the latter is expressed by a sum of 

the squares of the hopping/transfer integrals.1 Accordingly, the total potential energy 
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of an atom i can be written as

2( ) ( )i ij ij
j i j

E r f r


                               (1)

where ( )ijr  is the repulsive interaction, and ( )ijf r  is the hopping integrals between 

atoms i and j separated by distance ijr . In the TB-SMA scheme proposed by Rosato 

and Cleri et al.,2,3 the ( )ijr  and ( )ijf r  are taken to be exponential forms:
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where r0 is the first neighboring distance, p, q, A and ξ are four adjustable parameters. 

From a physical viewpoint, q describes the distance dependence of the 

hopping/transfer integrals.

For simplifying programming as well as saving computer resources, a cutoff 

radius is frequently established, and when the distance is greater than the cutoff radius, 

the interaction between atoms is disregarded. However, some problems may arise in 

the practical application of the cutoff radius. For example, the summations in Eq. (1) 

are restricted to the first neighbors in the study of Rosato et al.3 Unfortunately, the 

potential is not equal to zero at the cutoff radius, thus this treatment creates a problem, 

i.e. whenever an atom-pair ‘crosses’ the cutoff radius, the energy makes a little ‘jump’. 

A large number of these events could spoil the energy conservation or lead to some 

non-physical behaviors in the simulations.8 Besides, the atomic configurations in the 

first and second neighbors of fcc and hcp structures are quite similar, and as a result, 

the energy difference between them is considerably small and cannot be well 
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distinguished by the short-range potentials with a relatively small cutoff radius.

To solve these problems, the authors’ group has proposed a revised formulism, 

i.e., the formulism of the smoothed and long-range TB-SMA,9,10 by incorporating a 

binomial truncation function in the original TB-SMA potential. The expression of the 

smoothed and long-range TB-SMA potential can be written as follows:

( ) ( )i ij ij
j i j i

E r r
 

                                     (4)

1 1 1
0

11
1 1 1 1

0 0 0

exp[ ( 1)],                                 
( )

exp[ ( 1)]( ) ,           

ij
ij m

ij
ij ij nc

m m m ij c

r
A p r r

r
r

r rrA p r r r
r r r




  

 
     

        (5)

2 2 2
0

22
2 2 2 2

0 0 0

exp[ ( 1)],                                 
( )

exp[ ( 1)]( ) ,           

ij
ij m

ij
ij ij nc

m m m ij c

r
A p r r

r
r

r rrA p r r r
r r r




  

 
     

       (6)

where iE is the total potential energy of an atom i,   and   are called here the pair 

term and density term. rm1 and rm2 are the knots, and rc1 and rc2 are the cutoff radii of 

the pair term and density term, respectively. n1 and n2 are the indices which should not 

be less than 3 and 5, respectively, in order to avoid discontinuity of the high 

derivatives. A1, p1, A1m, and p1m and A2, p2, A2m, and p2m are another eight adjustable 

potential parameters. From Eqs. (5) and (6), one can see that the pair and density 

terms as well as their high derivatives could continuously and smoothly go to zero at 

the cutoff radii rc1 and rc2, thus removing the ‘jumps’ of energy and force and 

avoiding non-physical behaviors in simulations.10 In order to totally avoid the 

discontinuity of the energy, pressure and force in the whole calculated range, the pair 

and density terms as well as their first derivatives should also be continuous at the 
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transition knots rm1 and rm1 when fitting the potential parameters. Meanwhile, the 

cutoff radius rc2 is generally set beyond the second neighboring distance at least, in 

order to distinguish the energy difference between the fcc and hcp structures.
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2. Verification of Simulation Scheme

In the present study, the final energies of the Mg-Cu-Y models are derived by 

relaxing the constructed solid solution models at 300 K for sufficient simulation time. 

In addition to the present simulation route, there are several other types of simulation 

routes as well, for example, by liquid melt quenching, or annealing, to accelerate the 

sampling of phase-space. To verify the present simulation scheme, we take the alloy 

of Mg64Cu16Y20 as example. The final energies are derived and compared by the 

following three types of simulation routes: (1) relaxing at 300 K; (2) melting (for 

example, at 2300 K) and cooling down to 300 K; (3) annealing (for example, at 50 K 

below Tg) and cooling to 300 K. The detailed results are presented as follows.

(1) Relaxing at 300K

After constructing the Mg64Cu16Y20 solid solution model, we have allowed the 

models to evolve in MD simulations for about 4 × 106 timesteps, i.e., 20 ns, until the 

models have reached a relatively stable state, with all the related dynamic variables 

keeping almost unchanged with the increasing of simulation time. Fig. S1(a) shows 

the energy evolution during the simulation procedure. Due to the crystalline-to-

amorphous transition, the energy is overall decreased. One can see from Fig. S1(a) 

that the energy of system is converged to ~-2.467eV/atom, at which the variation 

gradient is on the order of magnitude of -10-10eV/timestep. This can be further 

demonstrated in Fig. S1(b), which indicates a negligible energy change in the final 4.5 

× 105 timesteps.
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Fig. S1 (a) Evolution of energy per atom during the simulation process for the Mg64Cu16Y20 

solid solution model. The energy evolution in the final 4.5 × 105 timesteps is specified in (b).

(2) Melting and cooling down to 300K (liquid melt quenching)

In addition to the first simulation route, another common practice to derive the 

final energy of the system is to simulate the liquid melt quenching process, and the 

related results are displayed here for comparison. During the simulation process, the 

system is heated from 300 K to 2300 K at a rate of 5 × 1010 K s-1 and equilibrated at 

2300 K for 5 ns. The melts are then quenched from 2300 K back to 300 K at the same 

rate of 5 × 1010 K s-1 and equilibrated at 300 K for 5 ns. The heating and cooling rates 

are set to be quite slow, in order to be close to the experimental condition and provide 

reasonable reference to the present study. The following Fig. S2 shows the evolution 

of the system energy for the Mg64Cu16Y20 during the quenching process.
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Fig. S2 Evolution of energy per atom as a function of temperature for the Mg64Cu16Y20 during 

quenching process.

From Fig. S2, one can first determine the Tg of Mg64Cu16Y20 to be ~415K. This 

value is quite close to the experimentally measured Tg for its adjacent compositions, 

such as 418 K or 425 K for Mg65Cu25Y10,11 420 K for Mg65Cu20Y15,12 and 419 K for 

Mg60Cu30Y10,13 which are all distributed in the regime of 400-450 K. The simulation 

result is in good accord with the experimental data and lends additional support to our 

constructed potential. By examining the evolution of energy in Fig. S2, the energy of 

system at 300K can be determined to be ~-2.469eV/atom. This value is close to the 

energy derived by relaxing at 300K, i.e., ~-2.467eV/atom, while the minor difference 

is also negligible in comparison to the magnitude of the calculated formation driving 

force.

7



(3) Annealing and cooling to 300K

In order to provide further evidence to the relevance of the simulations, we have 

considered a third simulation route, i.e., annealing the system obtained by relaxing at 

300 K, at a higher temperature, such as at 50K below Tg, and then cooling the system 

back to 300 K. Specifically, the system is firstly heated from 300 K to 365 K, i.e., 

50K below Tg, at a rate of 5 × 1010 K s-1, and then annealed at 365 K for 5 ns. Then 

the system is cooled from 365 K back to 300 K at the same rate of 5 × 1010 K s-1, and 

then equilibrated at 300 K for 5 ns. The heating and cooling rates are set to be quite 

slow as well. The following Fig. S3 shows the evolution of system energy during the 

heating and cooling processes. It can be seen that the annealed energy is also close to 

that derived by relaxing at 300K, thereby providing further support to the simulation 

results.

Fig. S3 Evolution of energy per atom as a function of temperature for the Mg64Cu16Y20 during 

the heating and cooling processes.
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Summarizing the results by the three simulation routes, it can be concluded that 

the present simulation route is relevant for Mg-Cu-Y system. In future studies, when 

extending the present prediction scheme to other systems, especially for the systems 

with high Tg, it would be feasible to introduce other types of simulation routes such 

as annealing to accelerate the sampling of the phase-space.
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3. Comparison of Resultant Structure

The atomic configurations of the metallic glasses in the present study are derived 

by the solid-state crystalline-to-amorphous transition, which is different from the 

liquid-to-amorphous transition, as involved in the liquid melt quenching process. 

Therefore, it is of interest to compare the resultant structures derived by the two types 

of phase transition mechanisms. 

For this end, we have selected representative alloys and independently analyzed 

the atomic configurations derived by the two kinds of phase transformations. It turns 

out that they exhibit no intrinsic differences in the various structural analyses, such as 

pair correlation function, Voronoi tessellation and Honeycutt-Anderson analyses. We 

also take the optimized alloy of Mg64Cu16Y20 as example. The atomic configurations 

and pair correlation functions derived by the two kinds of phase transformation are 

displayed in Fig. S4. It can be seen that the resultant atomic configurations are 

statistically equivalent. The simulation procedure of the liquid melt quenching is as 

introduced in Sec. 2.

Fig. S4 Comparison of atomic configurations and pair correlation functions derived for the 

Mg64Cu16Y20. Open circle is for Mg, red circle for Cu, and blue circle for Y. 
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Therefore, it is evidenced that the two categories of transformation can both 

result in realistic atomic configurations of metallic glasses and provide opportunities 

to examine the metallic glass formation from different perspectives. The present phase 

transition route enables one to directly examine the competition and relative stability 

between the solid solutions and metallic glasses, and also to investigate the underlying 

physics of phase transition.
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