Adsorption of CO₂ and CH₄ on amine-functionalised MCM-41:

experimental and theoretical studies

Thiago Custódio dos Santos,^a Sandrine Bourrelly,^b José Walkimar de Mesquita

Carneiro,^a Philip L. Llewellyn,^b Célia Machado Ronconi*a

Email: cmronconi@id.uff.br

Supplementary data

Fig. S1: (a) N_2 adsorption/desorption isotherms of MCM-41-Cl and BJH pore distribution (inset) obtained from the adsorption branch of the isotherm. (b) Powder X-ray diffraction pattern for MCM-41-Cl.

Fig. S2: Transmission electron microscopies of (a) MCM-41, (b) MCM-41N2, (c) MCM-41-N3, (d) MCM-41-methylaminopyridine and (e) MCM-41-guanidine.

Table S1. wB97x-D/6-311++G(d,p) relative energies of the protonated amines. Relative energy is the electronic energy at 0 K (without correction for zero-point vibrational energy). Relative Gibbs free energy includes thermal correction to 298 K

	Relative energy	Relative Gibbs free
	(kJ mol ⁻¹)	energy at 298 K (kJ
		mol ⁻¹)
Protonated N ¹ -ethylethane-1,2-		
diamine		
	0.0	0.0
and a start and a start a star	-30.0	-26.7

Protonated N¹-(2-aminoethyl)-N²-

ethylethane-1,2-diamine

0.0 0.0

Table S2. wB97x-D/6-311++G(d,p) relative energies of the protonated amines. Relative energy is the electronic energy at 0 K (without correction for zero-point vibrational energy). Relative Gibbs free energy includes thermal correction to 298 K

Relative	Relative Gibbs free energy
energy	at 298 K (kJ mol ⁻¹)
(kJ mol ⁻¹)	

Carbamates from N¹-(2-aminoethyl)-

N²-ethylethane-1,2-diamine

0.0

4.1

3.6