

Figure S1. Most stable adsorption sites of $C_2O_4H^2$ anion on proposed active sites of Mn-AAPyr. Two possible adsorption configurations are shown.

Table S1. Change in the electronic energy, zero-point energy, and $T\Delta S$ term used to obtain the free energy diagram for oxalate oxidation mechanism on MnN₄ active sites of Mn-AAPyr at pH=0.

Reaction:	$\Delta E/\mathrm{eV}$	ΔZPE/eV	$T\Delta S/eV$	$\Delta_{\rm r}G/{\rm eV}$
$*C_2O_4H + H^+ + e^- \rightarrow *C_2O_4H + H^+ + e^-$	+0.49	+0.09	-0.80	+1.38
$*C_2O_4H + H^+ + e^- \rightarrow CO_2H * + CO_2 + H^+$	-0.31	-0.305	+0.66	-1.28
$CO_2H *+ CO_2 + H^+ + e^- \rightarrow 2CO_2 + 2H^+ +$	-0.03	-0.18	+0.86	-1.06

Table S2. Change in the electronic energy used to obtain the free energy diagram for oxalate oxidation mechanism on MnN₃C, MnN₂C₂, MnN₂C₂(2) and MnN₃ active sites of Mn-AAPyr at pH=0. Change in zero-point energy and $T\Delta S$ term are assumed to be the same for all active sites and are given in Table 1.

	$\Delta E/\mathrm{eV}$				
Reaction:	MnN ₃ C	MnN_2C_2	$MnN_2C_2(2)$	MnN ₃	
$*C_2O_4H + H^+ + e^- \rightarrow *C_2O_4H + H^+ + e^-$	0.03	-0.25	0.06	-1.79	
$*C_2O_4H + H^+ + e^- \rightarrow CO_2H * + CO_2 + H^-$	0.18	0.39	0.13	1.13	
$CO_2H *+ CO_2 + H^+ + e^- \rightarrow 2CO_2 + 2H^+ +$	-0.04	+0.02	-0.03	+0.82	