## **ARTICLE TYPE**

## Supporting Information for the article:

## Role of the ionic liquid $C_6C_1$ ImTFSI in the sol-gel synthesis of silica studied by *in situ* SAXS and Raman spectroscopy<sup>‡</sup>

Moheb Nayeri<sup>\*a</sup> Kim Nygård,<sup>b</sup> Maths Karlsson,<sup>c</sup> Manuel Marechal,<sup>d</sup> Manfred Burghammer,<sup>e</sup> Michael Reynolds,<sup>e</sup> and Anna Martinelli<sup>\*a</sup>

In what follows seven supplementary figures (Fig. SI-I – Fig. SI-VII) are provided, which are referred to in the main text of the manuscript.



**Fig. SI-I.** This figure shows the typical Raman spectrum of an ionogel containing the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide,  $C_6C_1$ ImTFSI. The Raman vibrations arising from TMOS (643 cm<sup>-1</sup>), the TFSI anion (740 cm<sup>-1</sup>), methyl formate (910 cm<sup>-1</sup>), and methanol (1020 cm<sup>-1</sup>) are emphasized in color. The colored areas correspond to the integrated Raman intensities, which we monitor as a function of time to investigate the reaction evolution.



**Fig. SI-II.** This figure shows the <sup>1</sup>H NMR intensities previously reported in reference [19] for x=1 and here revisited to show the dependence on time of the added intensities (black) of the polar molecules methanol (blue) and methyl formate (purple).



**Fig. SI-III.** This figure shows the time evolution of the Raman spectra recorded for x=0 and x=1 in the C–H stretching region. As reaction time progresses (see arrows), the low-frequency component mainly attributed to TMOS decreases with respect to the high-frequency one, which contains also contributions from methanol and methyl formate. Raman spectra recorded at the time of gelation are shown in red.



**Fig. SI-IV.** This figure shows the time evolution of the Raman spectra recorded for solutions with different ionic liquid content, *i.e.* for x=0.05 (top-left), x=0.5 (top-right), x=1 (bottom-left), and x=2 (bottom-right). The Raman spectra recorded at the time of gelation, that is at  $t_{gel}$ , are shown in red.



**Fig. SI-V.** This figure shows the peak-fit procedure employed to model the x-ray diffraction pattern of the ionic liquid  $C_6C_1$ ImTFSI. Three Lorentzian functions are used to account for the three peaks ( $q_I$ ,  $q_{II}$ , and  $q_{III}$ ) associated to non-polar and polar domains, and to tail-to-tail correlations, respectively. As can de deduced from the residual trace, this model describes very well the experimental data.



Fig. SI-VI. This figure shows the time evolution of the SAXS pattern for the sample with no ionic liquid (x=0) and a sample with x=2. For the latter, the correlation lengths are also shown (right-most plot).



**Fig. SI-VII.** This figure shows the x-ray diffraction patterns recorded for the binary mixture  $C_6C_1$ ImTFSI:TMOS (left, a) and  $C_6C_1$ ImTFSI:FA (right, a). For comparison, the patterns of the pure ionic liquid (b, right and left), and TMOS (c, left) and formic acid (c, right) are also included.