Supporting Information

Towards Comprehensive Insight into Efficient Hydrogen Production by Self-assembled Ru(bpy)₃²⁺-Polymer-Pt Artificial Photosystems

Huan Lin, Dan Liu, Jinlin Long*, Zizhong Zhang, Huaqiang Zhuang, Yi Zheng, Xuxu Wang*

State Key Lab of Photocatalysis on Energy and Environment, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.

E-Mail: jllong@fzu.edu.cn

E-Mail: <u>xwang@fzu.edu.cn</u>

Figure S1 Photographs of PVP-Pt, PAM-Pt, P123-Pt, PEG-Pt, Pt, PEI-Pt PAA-Pt and PSS-Pt colloids.

Figure S2 XRD patterns of naked Pt nanoparticles.

glycol and H₂O [1:5 (v/v)] mixed solution (150 mL); Sample concentration: Ru(bpy)₃Cl₂ (66.7μ M), NaHA (50 mM), Pt (167 μ M) and PVP or PSS or PAA (8.33 mM as a monomeric unit); the control experiments were operated at the same concentration with one component absent.

Entry	Sample Name	NaOH (mM)	Average Diameter (nm) ^{a,b}	
1	PVP-Pt ₆₀	12	1.2 ± 0.2	
2	PVP-Pt ₇₅	10	1.3 ± 0.3	
3	PVP-Pt ₉₅	8	1.4 ± 0.2	
4	PVP-Pt ₁₁₅	7.2	1.5 ± 0.3	
5	PVP-Pt ₂₇₆	4	2.0 ± 0.3	

Table S1 Preparation Conditions and Average Diameter of PVP-Ptn

^a The diameter of particles was measured after H_2O was added into the as-prepared colloids (in a 5:1 ratio with EG, v/v).

^b The number of Pt atoms of clusters were calculated using the equation

$$n = \left(\frac{d_{P_t}}{1.105 \times d_{atom} P_t}\right)^3$$

 $(1.103 \times a_{atom,Pt})$, where n was the number of Pt atoms, d_{Pt} was diameter of the Pt nanoparticle, and d_{atom, Pt} was the atomic diameter of Pt (d_{atom, Pt}=0.278 nm).¹

Figure S4 Zeta potentials of PVP-Pt, PSS-Pt, PAA-Pt colloids as a function of pH.

Figure S5 Normalized fluorescence spectra of $Ru(bpy)_3Cl_2$ with various concentration in ethylene glycol and H_2O [1:5 (v/v)] mixed solution excited at 450nm at room temperature.

Figure S6 Time course of hydrogen evolution under photoirradiation ($\lambda \ge 420$ nm) of a deaerated ethylene glycol and H₂O [1:5 (v/v)] mixed solution (150 mL)

containing Ru(bpy)₃Cl₂ (66.7 μ M), Pt (167 μ M) and PVP (8.35 mM as a monomeric unit) and various electron donors (50 mM; (black) NaHA at optimal pH 4, (red) EDTA-2Na at optimal pH 7; (blue) TEOA) at optimal pH 7.

Sample	d _{Pt} ^[a] /nm	N _{total} ^[b] /-	m ^[c] /-	N _{surface} ^[d]	n _{surface} ^[e] /µmol
PVP-Pt	1.4	95	3.5	65	17.4
PSS-Pt	2.0	276	4.8	146	13.2
PAA-	2.1	320	5.1	170	13.3
Pt					

Table S2A Calculation details for the amount of surface Pt atoms 1-3

[a] Average diameter of Pt particles determined by TEM observations.[b] The number of total Pt atoms per particle,

$$N_{total} = \left(\frac{d_{P_t}}{1.105 \times d_{atom,P_t}}\right)^3 (d_{atom,P_t} = 0.278nm)$$
[c] The number of shells, $N_{total} = \frac{10m^3 - 15m^2 + 11m - 3}{3}$
[d] The number of surface Pt atoms per particle, $N_{surface} = 10m^2 - 20m + 12$.
[e] The amount of surface Pt atoms of Pt colloids,
 $n_{surface} = \frac{N_{surface}}{N_{total}} \times n_{total} (n_{total} = 25.6 \mu mol)$

Table S2B Calculation detail for mole ratio of PS/polymer/surface Pt atoms

nhotosystem	$n [Ru(bpy)_3^{2+}]$	n (poly)	n (Pt)	Ratio
photosystem	/µmol	/µmol	/µmol	/-
Ru(bpy) ₃ ²⁺ -PVP-Pt	10	100	17.4	1:10:1.7
Ru(bpy) ₃ ²⁺ -PSS-Pt	10	25	13.2	1: 2.5 : 1.3
Ru(bpy) ₃ ²⁺ -PAA- Pt	10	200	13.3	1: 20 : 1.3

- 1 Y. Shiraishi, D. Tsukamoto, Y. Sugano, A. Shiro, S. Ichikawa, S. Tanaka and T. Hirai, *ACS Catalysis*, 2012, **2**, 1984-1992.
- 2 R. E. Benfield, Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1107-1110.
- 3 O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez and R. M. Crooks, *Journal of the American Chemical Society*, 2006, **128**, 4510-4511.

Figure S7 UV-vis absorption spectrums of Ru(bpy)₃Cl₂ (abbr.: Ru), Ru-polymer, Ru-polymer-Pt, polymer-Pt [PVP (A), PSS (D), PAA (G)]. Conditions: Ru(bpy)₂Cl₃ ($^{2.5\times10^{-5}}$ M), polymer ($^{8.0\times10^{-4}}$ M), Pt ($^{4.0\times10^{-4}}$ M). And UV-vis absorption spectrums of Ru(bpy)₂Cl₃ ($^{2.5\times10^{-5}}$ M) in absence or in the presence of various concentrations polymers (B: $^{8.0\times10^{-3}}$ M PVP, C: $^{8.0\times10^{-2}}$ M PVP, E: $^{8.0\times10^{-3}}$ M PSS, F: $^{8.0\times10^{-2}}$ M PSS, H: $^{8.0\times10^{-3}}$ M PAA, I: $^{8.0\times10^{-2}}$ M PAA)

Figure S8 Relative emission spectra and time-resolved fluorescence decays at 613

nm of the de-aerated Ru(bpy)₃Cl₂ ($^{2.5\times10^{-5}}$ M) solution in present of various concentrations polymer (PVP: A and B; PSS: E and F; PAA: I and J) at pH=4. Relative emission spectra and time-resolved fluorescence decays at 613 nm of the de-aerated Ru(bpy)₃²⁺-Polymer (PVP: C and D; PSS: G and H; PAA: K and L) solution in the presence of various concentrations Pt colloids. Condition: Ru(bpy)₃²⁺ ($^{2.5\times10^{-5}}$ M), poly ($^{8.0\times10^{-4}}$ M)

Figure S9 Transient absorption of $\text{Ru}(\text{bpy})_3^{2+}$ ($^{2.5 \times 10^{-5}}$ M) in water, excited with a 450 nm laser Nd: YAG (~ 5 mJ/pulse). Inset (up): Excited state absorption decay at 370 nm. Inset (down): Ground-state bleach recovery measured at 460 nm. The blue data points represent the residual of the exponential decay fit.

Figure S10 Relative emission spectra and time-resolved fluorescence decays at 613 nm of the de-aerated $Ru(bpy)_3^{2+}$ (A and B) and $Ru(bpy)_3^{2+}$ -Polymer (PVP: C and D; PSS: E and F; PAA: G and H) solution in the presence of various concentrations (0 mM, 2 mM, 4 mM, 6 mM, 8 mM, 10 mM) of NaHA. Condition:

 $\text{Ru}(\text{bpy})_3^{2+}$ ($^{2.5 \times 10^{-5}}$ M), polymer ($^{8.0 \times 10^{-4}}$ M)

Figure S11 (A) Time profiles of the absorption at 510 nm due to $Ru(bpy)_{3}^{+}$ at various concentrations of NaHA (green, 0.05 M; bule, 0.02 M; red, 0.01 M; black, 0.005 M) in the presence of $Ru(bpy)_{3}^{2+}$ ($^{2.5 \times 10^{-5}}$ M) at pH=4. (B) Plot of the pseudo-first-order rate constant (kobs) for electron transfer from NaHA to $Ru(bpy)_{3}^{2+}$ vs [NaHA].

Figure S12 (A) Time profiles of the absorption at 510 nm due to $\text{Ru}(\text{bpy})_3^+$ in the presence of $\text{Ru}(\text{bpy})_3^{2+}$, NaHA and polyanion (PVP, PSS and PAA)-Pt at pH=4. Condition: $\text{Ru}(\text{bpy})_3^{2+}$ ($^{2.5 \times 10^{-5}}$ M), NaHA (0.05 M), polyanion ($^{8.0 \times 10^{-4}}$ M), Pt ($^{2.0 \times 10^{-4}}$ M). (B) Time profiles of the absorption at 510 nm due to $\text{Ru}(\text{bpy})_3^+$ in the presence of $\text{Ru}(\text{bpy})_3^{2+}$ and polyanion (PVP, PSS and PAA) at pH=4. Condition: $\text{Ru}(\text{bpy})_3^{2+}$ ($^{2.5 \times 10^{-5}}$ M), NaHA (0.05 M), polyanion ($^{8.0 \times 10^{-4}}$ M).