Electronic Supplementary Information (ESI)

to

Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: S_n^Q ($n = 3-20, Q = 0, \pm 1$)

Yuanyuan Jin,^{*a*} George Maroulis,^{*b*} Xiaoyu Kuang,^{*a**} Liping Ding,^{*a*} Cheng Lu,^{*c**} Jingjing Wang,^{*a*} Jian Lv,^{*d,e**} Chuanzhao Zhang^{*a*} and Meng Ju^{*a*}

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

^b Department of Chemistry, University of Patras, GR-26500 Patras, Greece.

^c Department of Physics, Nanyang Normal University, Nanyang 473061, China.

^d State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.

^e Beijing Computational Science Research Center, Beijing 100084, China.

In order to check the validity of the computational method, we first carry out calculations on S_2 , S_2^- , S_2^+ and S_6 clusters with a large variety of theoretical methods (HF¹, MP2², B3LYP^{3,4}, PW91^{3,5}, PBE⁶, B3P86⁴ and B3PW91^{3,5,7}) with the 6-311+G* basis set. The calculated results are summarized in Table S1. As evidenced from Table S1, B3P86 and B3PW91 give results in close agreement for both bond length (*r*) and vibrational frequency (ω) for the considered clusters, when compared to the experimental values. However, the calculated dissociation energy (*D*) and adiabatic ionization potential (AIP), adiabatic electron affinity (AEA) of S₂, vertical detachment energy (VDE) of S₂⁻ and AIP of S₆ at B3PW91 level are in better agreement with experimental values, with deviation less than 4%, 4%, 4%, 4% and 2%, respectively. On this basis, the B3PW91/6-311+G* method is selected for determination of the lowest-energy structures of sulfur clusters.

To further confirm the reliability of the B3PW91/6-311+G* method, the relative energies of conformers of neutral and charged S_8 are obtained by the DFT calculations and listed in Table S2, with those obtained by the MP2 calculations for comparison. Their geometries are depicted in Fig. S1. It can be seen that the B3PW91/6-311+G* method gives the exact ground-state structure of S_8 . In addition, based on the isodesmic reaction,

$$(m / 8)_8 \to m, \quad (m = 5, 6, 7)$$
 (1)

the thermodynamic heats of formation for neutral S_8 are calculated. The results are listed in Table S3, along with the previously theoretical and experimental data for comparison. From Table S3, our calculated heats of formation for S_8 are in good agreement with the available theoretical and experimental results, which mean that the present theoretical method is reliable.

Fig. S1. The lowest-energy and low-lying structures of S8 together with the point symmetry.

•

Fig. S2. The low-lying isomers of neutral S_n (n = 3-20) clusters together with the relative energy (eV) and point symmetry.

Fig. S3. The low-lying isomers of anionic S_n^- (n = 3-20) clusters together with the relative energy (eV) and point symmetry. S_3^- with D_{3h} symmetry has two imaginary frequencies.

Fig. S4. The low-lying isomers of cationic S_n^+ (n = 3-20) clusters together with the relative energy (eV) and point symmetry.

Table S1. Calculated bond length r (Å), bond angle θ (°), dihedral angle ϕ (°), vibrational frequency ω (cm⁻¹), the dissociation energy D (eV), adiabatic ionization potential AIP (eV), vertical detachment energies VDE (eV) of S₂, S₂⁻, S₂⁺ and S₆ at different levels together with their corresponding experimental values.

	Property	HF	MP2	B3LYP	PW91	PBE	B3P86	B3PW91	Experiment
S_2	r	1.879	1.920	1.927	1.937	1.936	1.913	1.914	1.889 ^a
	ω	792	678	684	665	667	707	706	$726^{a}, 725^{b}$
	D	1.72	1.69	4.08	4.61	4.61	4.32	4.19	4.37 ^{<i>a</i>}
	AIP	9.41	9.53	9.67	9.59	9.54	10.25	9.72	9.36^c , 9.30^d
	AEA	1.02	1.04	1.79	1.70	1.66	2.30	1.74	$1.67^{e}, 1.66^{f}$
\mathbf{S}_2^-	r	2.008	2.035	2.054	2.059	2.058	2.034	2.035	2.005 ^e
	ω	624	553	537	526	528	562	561	589^{g} , 570^{e} ,
	VDE	1.27	1.36	1.97	1.86	1.82	2.48	1.92	1.84^{b}
\mathbf{S}_2^+	r	1.786	1.866	1.840	1.855	1.855	1.829	1.831	1.825 ^{<i>i</i>} ,
	ω	951	705	805	774	777	830	828	790 ^a ,807 ^{k,l} ,
S_6	r	2.078	2.087	2.120	2.123	2.121	2.096	2.099	2.068 ^m
	heta	102.9	102.8	103.1	103.2	103.2	102.9	103.0	102.6 ^{<i>m</i>}
	ϕ	73.3	73.4	73.0	72.8	72.8	73.2	73.1	73.8 ^m
	ω_1	174	167	159	156	156	163	163	180 ^{<i>n</i>}
	ω_2	229	204	195	181	182	197	197	203 ⁿ
	ω_3	278	267	252	229	231	261	260	265 ⁿ
	ω_4	350	318	305	250	251	310	309	312 ⁿ
	ω_5	508	396	307	293	294	334	332	390 ^{<i>n</i>}
	ω_6	512	454	403	381	382	428	426	451 ⁿ
	ω_7	513	458	428	418	420	448	447	462 ⁿ
	ω_8	527	475	450	444	445	469	468	477 ⁿ
	AIP	9.08	9.09	8.78	8.53	8.48	9.38	8.82	9.00 ^c

^{*a*} Refer. 8 ^{*b*} Refer. 9. ^{*c*} Refer. 10. ^{*d*} Refer. 11. ^{*e*} Refer. 12. ^{*f*} Refer. 13. ^{*g*} Refer. 14. ^{*h*} Refer. 15.

^{*i*} Refer. 16. ^{*j*} Refer. 17. ^{*k*} Refer. 18. ^{*l*} Refer. 19. ^{*m*} Refer. 20. ^{*n*} Refer. 21.

.

Table S2. Calculated relative conformational energies of S_8 at different levels.

Isomers		Relative conformational energies										
_	MP2	B3LYP	PW91	PBE	M062X	B3P86	B3PW91					
8a	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
8b	0.42	0.43	0.44	0.44	0.36	0.43	0.44					
8c	1.64	0.63	0.28	0.30	0.78	0.62	0.65					
8d	1.02	0.64	0.49	0.50	0.69	0.66	0.68					
8e	2.33	0.71	0.34	0.35	0.96	0.69	0.72					
8f	2.40	1.09	0.80	0.82	1.21	1.08	1.11					
8g	2.20	1.13	0.83	0.84	1.34	1.18	1.19					
8h	5.00	1.55	1.14	1.16	1.66	1.58	1.60					
8i	6.87	1.68	1.06	1.08	2.36	1.74	1.77					

Isomers			Relative co	nformatior			
_	MP2	B3LYP	PW91	PBE	M062X	B3P86	B3PW91
8a	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8b	0.40	0.42	0.44	0.41	0.31	0.40	0.40
8c	0.98	0.48	0.36	0.34	0.39	0.44	0.46
8d	0.69	0.47	0.43	0.41	0.43	0.47	0.48
8e	0.11	0.05	0.12	0.09	0.22	0.03	0.04
8f	0.18	0.14	0.19	0.16	0.14	0.11	0.12
8g	0.23	0.30	0.44	0.41	0.11	0.33	0.32
8h	0.80	0.06	0.00	0.01	0.14	0.17	0.17
8i	0.98	0.59	0.21	0.21	1.26	0.77	0.77

Table S3. Calculated relative conformational energies of anionic ${\rm S_8^-}$ at different levels.

Table S4. Calculated relative conformational energies of cationic S_8^+ at different levels.

Isomers			al energies				
_	MP2	B3LYP	PW91	PBE	M062X	B3P86	B3PW91
8a	8.10	9.67	9.66	9.54	9.90	10.93	9.80
8b	7.46	9.15	9.21	9.09	9.24	10.37	9.24
8c	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8d	8.06	9.35	9.33	9.22	9.55	10.59	9.46
8e	7.92	9.87	9.66	9.55	10.11	11.08	9.96
8f	9.34	10.02	9.87	9.76	10.25	11.24	10.12
8g	7.78	9.82	9.81	9.69	10.03	11.09	9.95
8h	9.16	10.24	10.09	10.00	10.65	11.60	10.46
8i	11.39	10.45	10.01	9.91	11.30	11.87	10.73

Table S5. The heat of formation (298 K) of homocycle S_8 .

	1 officiation (K	<i>ai/1101)</i>
$S_8 \rightarrow 8/5 S_5$	$S_8 \rightarrow 8/6 S_6$	$S_8 \rightarrow 8/7 S_7$
18.5	9.2	7.1
17.8	8.8	6.3
18.3	7.9	6.7
18.2	7.2	6.5
12.8±3.4	6.26±0.33	5.77±0.31
14.3	6.2	5.7
10.9	6.1	5.9
	$S_8 \rightarrow 8/5 S_5$ 18.5 17.8 18.3 18.2 12.8±3.4 14.3 10.9	$S_8 \rightarrow 8/5 S_5$ $S_8 \rightarrow 8/6 S_6$ 18.5 9.2 17.8 8.8 18.3 7.9 18.2 7.2 12.8±3.4 6.26±0.33 14.3 6.2 10.9 6.1

^{*a*} Refer. 22. ^{*b*} Refer. 23. ^{*c*} Refer. 24. ^{*d*} Refer. 25. ^{*e*} Refer. 26.

Clusters	Vibrational frequency
S ₃	264, 582, 667
\mathbf{S}_4	87, 213, 324, 328, 644, 672
S_5	93, 225, 279, 292, 323, 327, 418, 493, 501
S_6	163, 163, 197, 197, 261, 310, 332, 427, 427, 447, 447, 468
S_7	53, 127, 149, 167, 192, 233, 263, 288, 336, 354, 366, 441, 471, 512, 521
S_8	74, 74, 144, 144, 191, 191, 214, 239, 247, 247, 367, 399, 399, 452, 452, 455, 455, 463
S ₉	49, 65, 80, 92, 143, 153, 173, 212, 214, 247, 251, 300, 372, 374, 408, 416, 441, 444, 446, 464, 471
\mathbf{S}_{10}	41, 47, 65, 84, 98, 122, 137, 162, 212, 214, 223, 238, 244, 254, 357, 388, 389, 439, 448, 448, 453, 468,
	475, 476
S_{11}	33, 41, 50, 63, 86, 108, 117, 142, 167, 180, 201, 215, 231, 243, 246, 271, 361, 369, 404, 413, 439, 446,
	448, 451, 462, 471, 476
S_{12}	42, 42, 43, 43, 68, 77, 102, 144, 156, 156, 178, 178, 239, 239, 250, 250, 272, 288, 363, 384, 384, 422, 422,
	443, 448, 449, 451, 451, 460, 460
S ₁₃	33, 35, 48, 48, 62, 62, 76, 111, 124, 149, 166, 169, 180, 211, 231, 236, 237, 242, 253, 299, 353, 365, 388,
	396, 419, 435, 443, 449, 450, 453, 464, 475, 484
\mathbf{S}_{14}	18, 37, 42, 47, 58, 58, 66, 75, 122, 130, 149, 157, 168, 185, 185, 220, 230, 233, 240, 243, 254, 274, 359,
	376, 376, 410, 414, 438, 442, 449, 450, 452, 455, 458, 463, 466
S_{15}	16, 22, 24, 31, 37, 59, 60, 62, 91, 93, 94, 123, 154, 156, 171, 193, 201, 212, 230, 237, 244, 244, 258, 264,
	367, 368, 392, 395, 422, 424, 444, 445, 448, 452, 457, 459, 461, 472, 477
S_{16}	15, 15, 29, 29, 52, 52, 53, 53, 60, 74, 86, 128, 128, 161, 169, 169, 189, 189, 203, 203, 240, 240, 243, 243,
	258, 263, 361, 374, 374, 403, 403, 430, 430, 445, 450, 450, 454, 454, 458, 458, 461, 461
S_{17}	16, 17, 20, 26, 33, 44, 47, 55, 58, 68, 72, 86, 112, 117, 152, 163, 175, 177, 181, 192, 219, 220, 235, 246,
	251, 257, 264, 276, 362, 370, 386, 389, 414, 417, 437, 439, 441, 447, 448, 452, 454, 458, 465, 468, 473
S_{18}	11, 18, 23, 26, 32, 39, 43, 50, 55, 58, 67, 71, 108, 132, 134, 136, 154, 157, 175, 187, 208, 210, 217, 225,
	228, 229, 237, 239, 248, 248, 360, 368, 375, 396, 396, 420, 423, 440, 443, 450, 451, 452, 456, 460, 462,
	463, 464, 477
${f S}_{19}$	7, 14, 17, 23, 30, 33, 35, 45, 50, 54, 58, 69, 79, 85, 111, 117, 145, 146, 165, 173, 187, 188, 212, 225, 236,
	243, 253, 256, 258, 263, 272, 295, 365, 367, 381, 386, 408, 409, 429, 432, 439, 441, 448, 449, 450, 451,
	458, 458, 460, 465, 466
S ₂₀	14, 16, 21, 23, 35, 38, 43, 47, 53, 61, 66, 68, 72, 87, 99, 115, 125, 145, 155, 160, 169, 180, 189, 210, 216,
	225, 228, 232, 234, 240, 244, 256, 258, 263, 361, 369, 372, 389, 393, 413, 414, 432, 434, 445, 448, 452,
	453, 454, 457, 459, 460, 463, 464, 469

Table S6. The vibrational frequency of S_n (n = 3-20) clusters.

Clusters	Vibrational frequency
S_3^-	226, 510, 545
\mathbf{S}_4^-	47, 110, 191, 415, 537, 560
S_5^-	43, 56, 121, 161, 226, 304, 417, 533, 550
\mathbf{S}_{6}^{-}	35, 43, 79, 102, 192, 217, 245, 270, 414, 430, 532, 543
\mathbf{S}_7^-	57, 65, 82, 139, 160, 163, 204, 206, 240, 330, 349, 421, 441, 517, 521
$\mathbf{S_8}^-$	55, 59, 62, 84, 145, 162, 171, 195, 204, 226, 233, 347, 360, 410, 423, 436, 499, 500
S_9^-	46, 49, 50, 54, 73, 107, 136, 145, 161, 221, 243, 248, 284, 346, 354, 392, 415, 439, 443, 514, 515
S_{10}^{-}	34, 40, 52, 53, 68, 85, 115, 128, 149, 166, 181, 225, 249, 253, 280, 346, 349, 389, 410, 425, 437, 445,
	483, 509,
S_{11}^{-}	28, 33, 36, 58, 64, 68, 80, 120, 150, 155, 165, 182, 188, 213, 232, 238, 259, 332, 337, 382, 408, 419,
	431, 440, 454, 509, 511
S_{12}^{-}	24, 27, 33, 47, 56, 68, 75, 87, 108, 122, 144, 156, 174, 186, 222, 232, 239, 253, 274, 341, 357, 375,
	403, 416, 431, 437, 447, 457, 480, 501
S_{13}^{-}	20, 25, 26, 43, 51, 57, 57, 65, 83, 111, 136, 142, 157, 168, 178, 206, 232, 236, 239, 243, 291, 339,
	343, 366, 392, 414, 421, 433, 447, 452, 461, 504, 509
S_{14}^{-}	15, 28, 32, 37, 43, 48, 51, 66, 78, 88, 118, 146, 155, 160, 176, 177, 183, 218, 222, 227, 235, 238, 245,
	337, 346, 371, 394, 412, 420, 432, 441, 447, 448, 459, 509, 513
S_{15}^{-}	15, 20, 25, 28, 33, 44, 48, 53, 62, 71, 78, 101, 117, 129, 143, 163, 175, 184, 217, 221, 238, 239, 261,
	269, 283, 332, 349, 370, 387, 403, 414, 424, 436, 437, 445, 453, 454, 497, 504
S_{16}^{-}	13, 20, 22, 27, 36, 42, 45, 51, 62, 67, 74, 85, 121, 127, 139, 153, 166, 170, 179, 193, 211, 220, 226,
	231, 234, 248, 259, 334, 347, 370, 384, 403, 413, 423, 435, 444, 448, 449, 451, 457, 486, 500
S_{17}^{-}	13, 15, 17, 20, 30, 38, 42, 43, 52, 55, 67, 77, 81, 95, 112, 134, 141, 163, 170, 177, 186, 198, 226, 226,
	237, 241, 257, 260, 272, 335, 340, 371, 382, 398, 410, 420, 430, 437, 439, 440, 449, 461, 465, 492,
	507
S_{18}^{-}	9, 13, 22, 25, 28, 32, 37, 41, 53, 59, 62, 67, 81, 97, 104, 121, 123, 141, 156, 163, 170, 182, 201, 202,
	217, 229, 235, 240, 251, 257, 265, 285, 287, 362, 370, 385, 405, 422, 438, 442, 444, 449, 451,
	460, 467, 486, 560, 619
S_{19}^{-}	13, 17, 19, 24, 28, 32, 39, 47, 53, 56, 61, 72, 74, 82, 89, 112, 124, 146, 155, 163, 170, 173, 176, 194,
	207, 217, 222, 228, 233, 236, 242, 245, 262, 279, 340, 352, 374, 385, 397, 416, 422, 433, 436, 445,
	447, 450, 453, 455, 464, 509, 517
S_{20}^{-}	12, 17, 22, 25, 28, 32, 35, 38, 44, 49, 52, 54, 58, 67, 74, 88, 98, 127, 135, 154, 157, 164, 167, 177,
	184, 191, 215, 229, 231, 238, 242, 245, 258, 267, 283, 346, 353, 362, 370, 388, 400, 410, 421, 430,
	437, 440, 442, 446, 449, 449, 457, 460, 509, 520

Table S7 The vibrational frequency of S_n^- (n = 3-20) clusters.

Clusters	Vibrational frequency
S_{3}^{+}	227, 425, 641
\mathbf{S}_4^+	74, 152, 246, 300, 690, 726
\mathbf{S}_{5}^{+}	34, 218, 274, 308, 331, 351, 446, 472, 508
${f S_{6}}^{+}$	76, 76, 198, 198, 257, 288, 341, 423, 423, 444, 444, 445
\mathbf{S}_{7}^{+}	40, 102, 141, 144, 179, 217, 232, 277, 312, 337, 417, 418, 465, 468, 480
$\mathbf{S_8}^+$	35, 82, 86, 106, 135, 148, 169, 197, 234, 281, 299, 361, 372, 393, 494, 511, 524, 546
\mathbf{S}_9^+	31, 59, 71, 84, 115, 152, 162, 183, 204, 211, 226, 279, 344, 355, 384, 394, 440, 458, 465, 475, 499
${S_{10}}^+$	33, 64, 71, 73, 86, 120, 134, 155, 199, 210, 210, 223, 236, 240, 340, 362, 381, 418, 442, 454, 459,
	468, 473, 490
S_{11}^{+}	32, 39, 49, 53, 66, 101, 113, 138, 162, 174, 184, 192, 217, 243, 255, 269, 309, 332, 379, 397, 434,
	442, 449, 457, 464, 465, 490
S_{12}^{+}	28, 28, 34, 41, 64, 69, 98, 111, 140, 143, 152, 176, 194, 213, 228, 239, 260, 276, 331, 353, 355, 405,
	410, 436, 439, 449, 457, 458, 458, 465
S_{13}^{+}	5, 30, 41, 43, 54, 56, 70, 101, 105, 122, 153, 163, 174, 203, 221, 224, 233, 241, 243, 278, 290, 322,
	357, 384, 419, 427, 444, 448, 450, 453, 457, 463, 473
${S_{14}}^+$	18, 26, 28, 32, 35, 67, 68, 79, 82, 94, 114, 134, 155, 179, 183, 192, 199, 213, 219, 225, 235, 245, 343,
	357, 360, 373, 410, 442, 443, 446, 461, 462, 471, 481, 482, 491
${S_{15}}^+$	12, 16, 28, 29, 41, 49, 59, 61, 66, 92, 101, 125, 143, 145, 157, 177, 179, 180, 187, 201, 217, 219, 245,
	247, 326, 338, 357, 366, 400, 430, 438, 443, 449, 454, 456, 463, 464, 473, 486
${S_{16}}^+$	18, 18, 26, 26, 43, 43, 55, 56, 56, 75, 87, 128, 128, 156, 161, 161, 169, 169, 177, 177, 191, 191, 227,
	227, 247, 252, 339, 352, 352, 381, 381, 418, 418, 443, 453, 456, 459, 459, 460, 460, 463, 463
${\bf S}_{17}^{+}$	17, 21, 30, 39, 42, 45, 52, 66, 70, 86, 103, 118, 124, 131, 148, 151, 166, 189, 198, 206, 212, 217, 227,
	238, 244, 257, 274, 321, 336, 357, 370, 394, 406, 432, 440, 447, 449, 453, 454, 459, 462, 466, 473,
	480
${\bf S_{18}}^+$	23, 25, 31, 35, 40, 42, 51, 53, 56, 58, 76, 77, 96, 116, 132, 137, 157, 157, 165, 182, 189, 190, 215,
	221, 227, 232, 234, 245, 246, 247, 331, 347, 362, 380, 392, 414, 424, 441, 442, 449, 449, 454, 456,
	457, 461, 465, 467, 506
${\bf S}_{19}^{+}$	12, 14, 14, 23, 24, 32, 37, 46, 48, 48, 58, 71, 75, 94, 111, 115, 138, 142, 149, 170, 174, 179, 200, 204,
	216, 225, 231, 242, 244, 255, 271, 280, 339, 348, 361, 364, 384, 400, 423, 426, 439, 444, 447, 449,
	450, 452, 455, 456, 457, 459, 460
S_{20}^{+}	10, 13, 15, 21, 28, 31, 32, 35, 41, 45, 54, 57, 64, 77, 92, 106, 119, 119, 139, 150, 156, 168, 174, 191,
	197, 205, 210, 221, 226, 233, 241, 244, 259, 288, 340, 349, 355, 370, 377, 393, 413, 423, 435, 443,
	445, 449, 451, 452, 456, 459, 463, 469, 469, 477

Table S8. The vibrational frequency of S_n^+ (n = 3-20) clusters.

Sys.	Ν	r (Å)	Sys.	Ν	r (Å)	Sys.	Ν	r (Å)
S ₃	2	1.937	S_{14}	2	2.107	S ₁₉	2	2.094
S_4	1	2.200		2	2.080		2	2.091
	2	1.921		2	2.092		2	2.081
S_5	2	2.112		2	2.091		2	2.101
	2	2.052		2	2.090		2	2.079
	1	2.226		2	2.096		2	2.091
S_6	6	2.099		2	2.078		2	2.088
S_7	2	2.079	S_{15}	2	2.069		2	2.087
	2	2.013		2	2.083		1	2.091
	2	2.143		2	2.092		2	2.091
	1	2.236		2	2.092	\mathbf{S}_{20}	1	2.100
S_8	8	2.088		2	2.081		1	2.084
S_9	2	2.112		2	2.111		1	2.086
	2	2.073		2	2.086		1	2.098
	2	2.085		1	2.130		1	2.093
	1	2.099	S_{16}	16	2.090		1	2.094
	2	2.096	S ₁₇	2	2.093		1	2.079
\mathbf{S}_{10}	2	2.076		2	2.088		1	2.100
	4	2.106		2	2.096		1	2.108
	4	2.083		2	2.083		1	2.078
S ₁₁	1	2.080		2	2.087		1	2.105
	1	2.085		2	2.086		1	2.081
	1	2.090		2	2.099		1	2.089
	1	2.107		2	2.092		1	2.101
	1	2.085		1	2.082		1	2.094
	1	2.099	S_{18}	2	2.085		1	2.083
	1	2.123		2	2.101		1	2.084
	1	2.087		2	2.089		1	2.097
	1	2.088		2	2.091		1	2.085
	1	2.071		2	2.094		1	2.083
	1	2.085		2	2.086			
S_{12}	12	2.090		2	2.088			
S_{13}	2	2.102		2	2.091			
	2	2.084		2	2.099			
	2	2.101						
	2	2.092						
	2	2.046						
	2	2.082						
	1	2.177						

TABLE S9. The bond number (N) and bond length (*r*) of S_n (n = 3-20) clusters.

TABLE S10. The bond number (N) and bond length (*r*) of S_n^- (*n* = 3–20) clusters.

0	ŊŢ	()	a	1.1	()		<u> </u>	()	, ,		()	a	NT	< 8 >
Sys.	N	<i>r</i> (A)	Sys.	N	<i>r</i> (A)		N	<i>r</i> (A)	Sys.	N	<i>r</i> (A)	Sys.	N	<i>r</i> (A)
S_3^-	2	2.026	S_{12}^{-}	1	2.027	S_{15}^{-}	1	2.020	S_{17}^{-}	1	2.022	S_{19}^{-}	1	2.195
S_4^-	1	2.009		2	2.117		1	2.135		1	2.123		1	2.085
	2	2.168		1	2.100		1	2.097		1	2.100		1	2.118
S_5^-	2	2.139		1	2.106		1	2.092		1	2.098		1	2.098
	2	2.008		1	2.087		1	2.097		1	2.091		1	2.094
S_6^-	2	2.008		1	2.100		1	2.078		1	2.093		1	2.089
	2	2.081		1	2.092		1	2.102		1	2.093		1	2.083
	1	2.192		1	2.102		1	2.089		1	2.095		1	2.106
S_7^-	2	2.016		1	2.073		1	2.097		1	2.086		1	2.140
	2	2.147		1	2.157		1	2.095		1	2.091		1	2.012
	2	2.095		1	2.031		1	2.091		1	2.088		1	2.022
S_8^-	1	2.101	S_{13}^{-}	1	2.023		1	2.110		1	2.095		1	2.099
	2	2.107		1	2.099		1	2.122		1	2.094		1	2.089
	2	2.114		1	2.098		1	2.024		1	2.101		1	2.092
	2	2.030		1	2.066	S_{16}^{-}	1	2.115		1	2.127		2	2.094
S_9^-	2	2.014		1	2.140		1	2.101		1	2.024		1	2.073
	2	2.150		1	2.094		1	2.114	S_{18}^{-}	1	2.052		1	2.095
	2	2.084		1	2.020		1	2.090		1	2.108	S_{20}^{-}	1	2.011
	2	2.101		1	2.072		1	2.026		1	2.092		1	2.092
S_{10}^{-}	1	2.087		1	2.147		1	2.115		1	2.095		1	2.088
	1	2.106		1	2.113		1	2.094		1	2.090		1	2.081
	1	2.101		1	2.116		1	2.095		1	2.092		1	2.097
	1	2.088		1	2.088		1	2.098		1	2.093		1	2.095
	1	2.100	S_{14}^{-}	1	2.109		2	2.089		1	2.086		1	2.085
	1	2.033		1	2.087		1	2.092		1	2.095		1	2.106
	1	2.123		1	2.083		1	2.100		1	2.096		1	2.088
	1	2.019		1	2.097		1	2.087		1	2.087		1	2.103
	1	2.140		1	2.093		1	2.031		1	2.098		1	2.080
S_{11}^{-}	1	2.019		1	2.019					1	2.063		1	2.149
	1	2.124		1	2.019					1	2.639		1	2.093
	1	2.110		1	2.127					1	1.989		1	2.089
	1	2.092		1	2.096					1	2.268		1	2.097
	1	2.100		1	2.089					1	1.953		1	2.107
	1	2.088		1	2.121								1	2.113
	1	2.092		1	2.100								1	2.022
	1	2.099		1	2.101								1	2.104
	1	2.139												
	1	2.021												

TABLE S11. The bond number (N) and bond length (r) of S_n ($n = 3-20$) cluster	TABL	SLE	S11.	The b	ond 1	number	(N)	and l	bond	length	(r)	of S_n^+	(n = 1)	3-20)	cluster	s.
--	------	------------	------	-------	-------	--------	-----	-------	------	--------	-----	------------	---------	-------	---------	----

Sys.	N	r (Å)	Sys.	Ν	r (Å)	Sys.	Ν	r (Å)	Sys.	Ν	r (Å)
S_3^+	2	2.029	${\bf S}_{12}^{+}$	4	2.085	${S_{16}}^+$	16	2.087	${\bf S}_{19}^{+}$	1	2.092
	1	2.186		4	2.080	${\bf S}_{17}^{+}$	1	2.071		1	2.087
$\mathbf{S_4}^+$	1	2.392		4	2.090		1	2.096		1	2.085
	2	1.878	S_{13}^{+}	1	2.096		1	2.086		1	2.084
$\mathbf{S_5}^+$	2	2.070		1	2.085		1	2.096		1	2.088
	2	2.116		1	2.108		1	2.133		1	2.085
	1	2.055		1	2.080		1	2.064		1	2.093
S_6^+	6	2.082		1	2.064		1	2.065		1	2.083
\mathbf{S}_7^+	2	2.113		1	2.078		1	2.088		1	2.084
	1	2.063		1	2.110		1	2.100		1	2.088
	2	2.065		1	2.087		1	2.083		1	2.088
	2	2.091		1	2.062		1	2.092		1	2.081
S_8^+	2	2.184		1	2.115		1	2.088		1	2.080
	2	2.022		1	2.096		1	2.120		1	2.099
	2	1.987		1	2.085		1	2.092		1	2.085
	1	2.233		1	2.086		1	2.097		2	2.087
	1	2.166	S_{14}^{+}	1	2.125		1	2.083		1	2.086
$\mathbf{S_9}^+$	1	2.144		1	2.045		1	2.087		1	2.090
	2	2.045		1	2.085	${S_{18}}^+$	2	2.084	${S_{20}}^+$	1	2.067
	2	2.137		1	2.098		2	2.093		1	2.114
	2	2.054		1	2.085		2	2.078		1	2.063
	2	2.094		1	2.074		2	2.094		1	2.128
${S_{10}}^+$	2	2.104		1	2.111		2	2.095		1	2.061
	4	2.072		1	2.083		2	2.082		1	2.100
	4	2.092		1	2.108		2	2.097		1	2.087
${S_{11}}^+$	1	2.085		1	2.138		2	2.093		1	2.088
	1	2.095		1	2.058		2	2.086		1	2.084
	1	2.101		1	2.058					1	2.088
	1	2.073		1	2.070					1	2.096
	1	2.095		1	2.097					1	2.081
	1	2.080	S_{15}^{+}	3	2.083					1	2.089
	1	2.075		2	2.089					1	2.087
	1	2.075		2	2.092					1	2.089
	1	2.098		2	2.074					1	2.079
	1	2.108		2	2.111					1	2.098
	1	2.082		2	2.062					1	2.083
				1	2.112					1	2.082
				1	2.088					1	2.100

Clusters	Symm.	State	E (Hartree)	E_b (eV)	E_{gap} (eV)
S ₃	C_{2v}	${}^{1}A_{1}$	-1194.46	2.20	2.76
S_4	C_{2v}	${}^{1}A_{1}$	-1592.63	2.31	2.14
S_5	C_s	$^{1}A'$	-1990.82	2.45	3.64
S_6	D_{3d}	${}^{1}A_{1g}$	-2389.00	2.54	4.37
S_7	C_s	$^{1}A'$	-2787.17	2.55	4.27
S_8	D_{4d}	${}^{1}A_{1}$	-3185.35	2.60	4.73
S ₉	C_2	^{1}A	-3583.51	2.56	4.27
S_{10}	D_2	^{1}A	-3981.68	2.56	3.92
S ₁₁	C_1	^{1}A	-4379.85	2.56	4.07
S ₁₂	D_{3d}	${}^{1}A_{1g}$	-4778.03	2.59	4.37
S ₁₃	C_2	^{1}A	-5176.18	2.56	4.04
S_{14}	C_s	¹ A'	-5574.36	2.57	4.13
S ₁₅	C_2	^{1}A	-5972.52	2.57	4.04
S ₁₆	D_{4d}	${}^{1}A_{1}$	-6370.70	2.58	4.06
S ₁₇	C_2	^{1}A	-6768.86	2.58	4.07
S ₁₈	C_2	^{1}A	-7167.03	2.57	3.97
S ₁₉	C_2	^{1}A	-7565.20	2.58	4.07
S ₂₀	C_1	^{1}A	-7963.37	2.57	4.12

TABLE S12. The geometric symmetry, electronic state, total energy (*E*), binding energy per atom (*E_b*), and the HOMO–LUMO energy gaps (E_{gap}) of S_n clusters (n = 3-20).

Clusters	Symm.	State	E (Hartree)	$E_b ({ m eV})$	$E_{gap} ({ m eV})$
S_3^-	C_{2v}	${}^{2}B_{1}$	-1194.56	2.38	2.09
\mathbf{S}_4^{-}	C_{2h}	${}^{2}\mathbf{B}_{g}$	-1592.73	2.44	1.75
\mathbf{S}_5^-	C_2	${}^{2}\mathbf{B}$	-1990.90	2.46	1.15
\mathbf{S}_{6}^{-}	C_2	^{2}A	-2389.07	2.50	1.03
\mathbf{S}_7^-	C_s	² A"	-2787.25	2.53	1.94
\mathbf{S}_8^-	C_2	${}^{2}\mathbf{B}$	-3185.42	2.56	1.86
\mathbf{S}_9^-	C_2	${}^{2}\mathbf{B}$	-3583.59	2.55	1.92
\mathbf{S}_{10}^{-}	C_{I}	^{2}A	-3981.75	2.55	1.91
${\bf S}_{11}^{-}$	C_{I}	^{2}A	-4379.92	2.55	1.87
${\bf S}_{12}^{-}$	C_{I}	^{2}A	-4778.09	2.56	1.91
S_{13}^{-}	C_{I}	^{2}A	-5176.26	2.57	1.87
${\bf S}_{14}^{-}$	C_{I}	^{2}A	-5574.43	2.57	1.90
S_{15}^{-}	C_{I}	^{2}A	-5972.61	2.58	1.80
${\bf S}_{16}^{-}$	C_{I}	^{2}A	-6370.77	2.57	1.79
S_{17}^{-}	C_{I}	^{2}A	-6768.94	2.58	1.67
S_{18}^{-}	C_{I}	^{2}A	-7167.11	2.58	1.69
S_{19}^{-}	C_{I}	^{2}A	-7565.28	2.58	1.63
S_{20}^{-}	C_1	^{2}A	-7963.45	2.58	1.58

TABLE S13. The geometric symmetry, electronic state, total energy (*E*), binding energy per atom (*E_b*), and the HOMO–LUMO energy gaps (E_{gap}) of S_n^- clusters (n = 3-20).

Clusters	Symm.	State	E (Hartree)	E_b (eV)	$E_{gap} \left(\mathrm{eV} \right)$
S_{3}^{+}	C_{2v}	${}^{2}B_{1}$	-1194.12	2.59	1.77
$\mathbf{S_4}^+$	C_{2v}	${}^{2}B_{1}$	-1592.31	2.74	1.95
\mathbf{S}_{5}^{+}	C_s	² A"	-1990.51	2.86	2.06
${S_6}^+$	D_{3d}	$^{2}A_{1g}$	-2388.68	2.83	1.61
\mathbf{S}_{7}^{+}	C_2	$^{2}\mathbf{B}$	-2786.86	2.83	1.65
$\mathbf{S_8}^+$	C_2	^{2}A	-3185.03	2.80	1.49
\mathbf{S}_9^+	C_2	^{2}A	-3583.20	2.80	1.37
${\bf S}_{10}^{+}$	D_2	${}^{2}B_{3}$	-3981.38	2.80	1.29
${\bf S}_{11}^{+}$	C_{I}	^{2}A	-4379.54	2.77	1.33
${\bf S}_{12}^{+}$	C_{2h}	${}^{2}B_{u}$	-4777.72	2.76	1.09
S_{13}^{+}	C_{I}	^{2}A	-5175.88	2.74	0.88
${\bf S}_{14}^{+}$	C_{I}	^{2}A	-5574.06	2.74	0.92
${\bf S}_{15}^{+}$	C_2	2 B	-5972.23	2.73	0.76
${S_{16}}^+$	D_{4d}	${}^{2}\mathbf{B}_{2}$	-6370.40	2.73	0.91
${\bf S}_{17}^{+}$	C_{I}	^{2}A	-6768.56	2.71	1.09
${S_{18}}^+$	C_2	${}^{2}\mathbf{B}$	-7166.73	2.71	1.36
${S_{19}}^+$	C_{I}	^{2}A	-7564.91	2.71	0.81
${S_{20}}^+$	C_{I}	^{2}A	-7963.08	2.70	0.59

TABLE S14. The geometric symmetry, electronic state, total energy (*E*), binding energy per atom (*E_b*), and the HOMO–LUMO energy gaps (E_{gap}) of S_n^+ clusters (n = 3-20).

Table S15. Cartesian coordinates of ground state S_n (n = 3-20) clusters reported in Fig. 1.

S ₃			
S	0.00000000	0.00000000	0.66125300
S	0.00000000	1.66425700	-0.33062700
S	0.00000000	-1.66425700	-0.33062700
\mathbf{S}_4			
S	0.00000000	1.09996000	0.93175600
S	0.00000000	-1.09996000	0.93175600
S	0.00000000	-1.56734400	-0.93175600
S	0.00000000	1.56734400	-0.93175600
S_5			
S	-1.06329700	-1.34152400	0.00000000
S	0.26582400	-0.67246000	1.49936700
S	0.26582400	1.34322200	1.11277200
S	0.26582400	1.34322200	-1.11277200
S	0.26582400	-0.67246000	-1.49936700
S_6			
S	0.00000000	1.89639100	0.44947800
S	-1.64232300	0.94819600	-0.44947800
S	-1.64232300	-0.94819600	0.44947800
S	0.00000000	-1.89639100	-0.44947800
S	1.64232300	-0.94819600	0.44947800
S	1.64232300	0.94819600	-0.44947800
S_7			
S	-0.86554200	-1.84378800	1.11800300
S	1.15515700	0.77456900	1.67371700
S	1.15515700	0.77456900	-1.67371700
S	-0.86554200	-1.84378800	-1.11800300
S	-0.86554200	0.06553300	1.75721300
S	1.15185500	2.00737300	0.00000000
S	-0.86554200	0.06553300	-1.75721300
S_8			
S	0.00000000	2.40604400	0.49164000
S	-2.40604400	0.00000000	0.49164000
S	2.40604400	0.00000000	0.49164000
S	-1.70133000	1.70133000	-0.49164000
S	0.00000000	-2.40604400	0.49164000

S	1.70133000	-1.70133000	-0.49164000
S	-1.70133000	-1.70133000	-0.49164000
S	1.70133000	1.70133000	-0.49164000
S ₉			
S	0.00000000	2.68183500	0.56727200
S	0.07688900	1.04672000	-2.40102900
S	1.19840600	-1.82781700	-0.94784200
S	-1.15321900	-1.18789400	1.42597800
S	-1.19840600	1.82781700	-0.94784200
S	-0.07688900	-1.04672000	-2.40102900
S	0.00000000	0.00000000	2.71124200
S	1.15321900	1.18789400	1.42597800
S	0.00000000	-2.68183500	0.56727200
S ₁₀			
S	2.83477900	0.01396600	1.03776700
S	-2.83477900	0.01396600	-1.03776700
S	2.83477900	-0.01396600	-1.03776700
S	-2.83477900	-0.01396600	1.03776700
S	1.22986300	1.22758900	1.65815700
S	-1.22986300	1.22758900	-1.65815700
S	1.22986300	-1.22758900	-1.65815700
S	0.00000000	0.00000000	-2.80723800
S	0.00000000	0.00000000	2.80723800
S	-1.22986300	-1.22758900	1.65815700
S ₁₁			
S	0.17542200	2.90956800	0.65248300
S	1.41252300	-1.62426600	-1.38224600
S	-2.81911600	1.48293300	-0.38397100
S	1.46664900	1.44510400	1.36946100
S	-2.54604400	-1.73284500	0.79925200
S	-2.77471400	-0.53726300	-0.89651300
S	2.89986900	1.20771100	-0.17889300
S	-0.97556400	2.29535600	-0.97448200
S	0.57449900	-2.88421200	0.05964400
S	-0.54336700	-1.73018300	1.38816600
S	3.12984300	-0.83190200	-0.45290100
S ₁₂			
S	-1.97696900	2.17664200	1.69859300
S	0.00000000	0.00000000	3.39788400
S	1.97696900	-2.17664200	1.69859300

S	1.97696900	-2.17664200	-1.69859300
S	0.00000000	0.00000000	-3.39788400
S	-1.97696900	2.17664200	-1.69859300
S	0.00000000	-1.69266800	-2.17236800
S	0.00000000	-1.69266800	2.17236800
S	0.00000000	1.69266800	-2.17236800
S	2.52443800	-1.08951600	0.00000000
S	-2.52443800	1.08951600	0.00000000
S	0.00000000	1.69266800	2.17236800
S ₁₃			
S	1.25648200	1.20595600	2.17846700
S	1.89215800	-2.40127900	-0.90700600
S	1.72422400	-0.32864200	-1.20956100
S	-1.89215800	2.40127900	-0.90700600
S	0.00000000	3.09209100	-0.34083100
S	-1.08441800	-0.09182700	-3.10681300
S	-1.25648200	-1.20595600	2.17846700
S	0.24871100	2.99412200	1.72399400
S	0.00000000	-3.09209100	-0.34083100
S	-1.72422400	0.32864200	-1.20956100
S	1.08441800	0.09182700	-3.10681300
S	-0.24871100	-2.99412200	1.72399400
S	0.00000000	0.00000000	3.32350100
S ₁₄			
S	-0.50120900	-1.84449500	2.07390000
S	-2.14120100	1.17729500	-1.71574500
S	-2.14338000	-0.69987200	-2.63840600
S	2.25554500	1.59821200	1.69352700
S	1.03997100	1.74839000	0.00000000
S	2.25554500	1.59821200	-1.69352700
S	-2.14120100	1.17729500	1.71574500
S	1.11019100	-1.22818500	3.28354100
S	2.56766200	-0.44799900	-2.02529900
S	-2.14338000	-0.69987200	2.63840600
S	-0.50120900	-1.84449500	-2.07390000
S	-3.33518600	1.14170000	0.00000000
S	2.56766200	-0.44799900	2.02529900
S	1.11019100	-1.22818500	-3.28354100
S ₁₅			
S	-0.06546200	2.47241700	-3.19739600
S	2.15013100	-2.07230600	2.69264200

S	-2.15013100	2.07230600	2.69264200
S	0.06546200	-2.47241700	-3.19739600
S	1.95418200	-3.03565800	-0.46975200
S	0.00000000	0.00000000	4.31046200
S	0.81253100	-0.68838400	-3.93245800
S	-0.81253100	0.68838400	-3.93245800
S	0.00000000	2.57161300	-1.11788200
S	-2.53315500	1.44114900	0.73517900
S	-0.13639200	1.71780300	3.13443600
S	0.13639200	-1.71780300	3.13443600
S	2.53315500	-1.44114900	0.73517900
S	0.00000000	-2.57161300	-1.11788200
S	-1.95418200	3.03565800	-0.46975200
S ₁₆			
S	1.66961300	4.03080200	0.00000000
S	-1.66961300	-4.03080200	0.00000000
S	-4.03080200	1.66961300	0.00000000
S	4.03080200	-1.66961300	0.00000000
S	4.03080200	1.66961300	0.00000000
S	1.66961300	-4.03080200	0.00000000
S	-4.03080200	-1.66961300	0.00000000
S	3.43249600	0.00000000	1.10517800
S	2.42714100	2.42714100	-1.10517800
S	0.00000000	3.43249600	1.10517800
S	-2.42714100	2.42714100	-1.10517800
S	-3.43249600	0.00000000	1.10517800
S	-2.42714100	-2.42714100	-1.10517800
S	0.00000000	-3.43249600	1.10517800
S	2.42714100	-2.42714100	-1.10517800
S	-1.66961300	4.03080200	0.00000000
S ₁₇			
S	-0.35566300	3.43360200	-2.56505800
S	-1.35503200	-2.86337400	3.04227600
S	0.35566300	-3.43360200	-2.56505800
S	1.35503200	2.86337400	3.04227600
S	1.07423500	4.68695200	0.18661300
S	0.00000000	0.00000000	4.00550500
S	-1.07423500	-4.68695200	0.18661300
S	0.00000000	3.70804600	1.68397600
S	1.41080200	3.42729400	-1.44197100
S	1.33054700	-1.65822600	-2.05714500
S	-1.41080200	-3.42729400	-1.44197100

S	0.00000000	-3.70804600	1.68397600
S	-1.49758800	-0.80273300	2.77287800
S	1.49758800	0.80273300	2.77287800
S	0.99194800	-0.31501500	-3.62432200
S	-0.99194800	0.31501500	-3.62432200
S	-1.33054700	1.65822600	-2.05714500
S ₁₈			
S	0.00000000	3.82471000	0.36072100
S	-0.09030200	-4.48738100	-1.63106300
S	0.83615800	1.43682600	-2.85429200
S	-3.01399200	-0.73270800	2.22337900
S	-0.83615800	-1.43682600	-2.85429200
S	-0.60012900	2.95626500	-2.87264000
S	1.52385300	-0.72273100	2.32500500
S	-1.52385300	0.72273100	2.32500500
S	3.01399200	0.73270800	2.22337900
S	1.99002600	3.72828100	0.97505800
S	0.09030200	4.48738100	-1.63106300
S	2.84095400	1.87374400	0.48378800
S	0.00000000	-3.82471000	0.36072100
S	-2.84095400	-1.87374400	0.48378800
S	0.60012900	-2.95626500	-2.87264000
S	-1.99002600	-3.72828100	0.97505800
S	0.00000000	0.00000000	-1.58092000
S	0.00000000	0.00000000	3.56100800
S ₁₉			
S	-0.77066000	-4.95182600	1.00777100
S	-0.76495400	3.86532200	1.92862200
S	-1.17700500	-1.26652400	2.92135700
S	1.40714300	3.78104100	-0.60370200
S	-1.45650200	1.64732600	-3.29079300
S	1.17700500	1.26652400	2.92135700
S	0.00000000	-2.87320600	3.59009700
S	1.03560600	-0.14426500	-1.90335300
S	-1.03560600	0.14426500	-1.90335300
S	1.45650200	-1.64732600	-3.29079300
S	-0.32035800	-4.39279600	-2.28252000
S	0.76495400	-3.86532200	1.92862200
S	1.54814500	-3.45481100	-2.25080300
S	-1.40714300	-3.78104100	-0.60370200
S	0.77066000	4.95182600	1.00777100
S	-1.54814500	3.45481100	-2.25080300

S	0.00000000	2.87320600	3.59009700
S	0.32035800	4.39279600	-2.28252000
S	0.00000000	0.00000000	1.76664800
S ₂₀			
S	-1.28690800	0.45940100	-1.83785300
S	0.92548200	3.74969800	-0.10602200
S	-3.39912400	-1.66549800	1.88430500
S	2.85438300	-0.46857200	2.18989200
S	-1.39180500	-2.61033400	-0.62078600
S	3.56838000	0.46294100	-1.00244300
S	-4.89000300	-0.77445500	0.71671100
S	1.66994400	0.85908500	3.26478900
S	-3.37579600	0.49437300	-2.04661800
S	0.06545200	3.38783100	1.75955300
S	-0.52519600	2.17322400	-2.74633100
S	-0.65189400	3.82864400	-1.48712100
S	1.87065700	-3.40309900	-0.29769800
S	2.57024100	-2.58887400	-2.09888300
S	-4.14303000	0.96902000	-0.15737100
S	-0.05981900	1.35079300	2.17805300
S	0.41023500	-2.04801300	0.31818100
S	4.23745400	-1.39681100	-1.72741600
S	-2.67324400	-3.33309000	0.84666500
S	4.22459200	0.55373800	0.97039200

Table S16. Cartesian coordinates of ground state S_n^- (n = 3-20) clusters reported in Fig. 2.

S_3^-			
S	0.00000000	0.00000000	0.71485100
S	0.00000000	1.71854200	-0.35742600
S	0.00000000	-1.71854200	-0.35742600
\mathbf{S}_4^-			
S	1.02697000	2.35554300	0.00000000
S	1.02697000	0.34652300	0.00000000
S	-1.02697000	-0.34652300	0.00000000
S	-1.02697000	-2.35554300	0.00000000
\mathbf{S}_{5}^{-}			
S	0.00000000	0.00000000	1.09353600
S	0.00000000	1.66438300	-0.25038300
S	0.00000000	-1.66438300	-0.25038300
S	1.77265300	2.60678500	-0.29638500
S	-1.77265300	-2.60678500	-0.29638500
\mathbf{S}_{6}^{-}			
S	0.60443100	2.20220200	-0.67091500
S	-0.60443100	3.69225100	-0.07819400
S	0.60443100	-3.69225100	-0.07819400
S	-0.60443100	-2.20220200	-0.67091500
S	-0.84324100	-0.70019800	0.74910900
S	0.84324100	0.70019800	0.74910900
$\mathbf{S_7}^-$			
S	-1.40122700	1.54057400	1.50678900
S	0.33034800	-1.39823200	1.72285400
S	0.33034800	-1.39823200	-1.72285400
S	-1.40122700	1.54057400	-1.50678900
S	0.33034800	0.71174100	2.12207400
S	1.48106300	-1.70816500	0.00000000
S	0.33034800	0.71174100	-2.12207400
$\mathbf{S_8}^-$			
S	-0.42518200	0.96034100	-2.19926200
S	-0.67275600	-2.29255600	-0.99185600
S	-0.20773100	2.47912500	0.92099800
S	0.42518200	-0.96034100	-2.19926200
S	-0.67275600	-1.24489700	2.27012000
S	0.67275600	1.24489700	2.27012000

S	0.20773100	-2.47912500	0.92099800
S	0.67275600	2.29255600	-0.99185600
\mathbf{S}_{9}^{-}			
S	1.22353100	-2.17073900	-0.92918400
S	1.13749300	1.24665400	1.37358600
S	0.00000000	2.85727100	0.69968300
S	-0.09951100	1.49161100	-2.45618200
S	0.09951100	-1.49161100	-2.45618200
S	-1.13749300	-1.24665400	1.37358600
S	0.00000000	-2.85727100	0.69968300
S	0.00000000	0.00000000	2.62419600
S	-1.22353100	2.17073900	-0.92918400
S_{10}^{-}			
S	1.33884000	-1.52034300	1.21104800
S	-0.85333700	-1.63626000	-1.35201300
S	-2.69551600	-1.38769300	-0.37318900
S	-2.51477000	2.01353800	0.40419000
S	1.89399700	2.55434200	0.21949500
S	2.60979000	0.98482900	-0.82958400
S	-0.85077500	2.47068600	-0.67100100
S	3.07922500	-0.69804000	0.40546000
S	0.40057700	-2.80969200	-0.16425600
S	-2.40803200	0.02863300	1.14984900
S_{11}^{-}			
S	-1.83977400	2.57084700	0.76581600
S	2.57731500	-0.82304700	-1.20257200
S	-3.28143700	-0.36553400	-0.57549400
S	-0.05784800	2.02425300	1.54138200
S	-1.11318600	-2.75539100	0.67426000
S	-1.92138700	-1.88114400	-1.05517700
S	1.93075900	2.47405000	-0.54339000
S	-2.36409300	1.48986700	-0.98555200
S	2.25138500	-2.13018900	0.40758900
S	0.48373000	-1.62808100	1.40702600
S	3.33453600	1.02436900	-0.43388800
S_{12}^{-}			
S	2.64577400	0.55522300	-1.43633300
S	0.76918300	-2.61561000	1.36473100
S	-2.55300700	-1.20866200	-1.33414700
S	-3.57870000	0.68029000	-1.15638400

S	3.26216400	-1.29464100	-0.64104500
S	1.10742200	2.34171500	1.20489500
S	-2.46018000	-1.98410300	0.58627900
S	-2.61762400	1.80474400	0.23493000
S	2.83872900	2.05430800	0.02118500
S	1.63306300	-2.59519000	-0.54882100
S	-0.31510600	3.42346300	0.24892300
S	-0.73171700	-1.16153700	1.45578800
S_{13}^{-}			
S	0.56968100	2.34280700	-1.35151500
S	1.99524100	-2.00822500	-1.43954200
S	0.07317800	-1.17658100	-1.57425000
S	-3.42043000	0.23095800	1.27208000
S	-3.22914600	1.21414600	-0.61900600
S	-1.62734400	-2.69291200	0.95410100
S	2.35539600	1.47793100	1.47621400
S	-2.12611200	2.90072800	-0.48717600
S	2.64962100	-1.80349600	0.54289000
S	-1.61045700	-0.74610400	1.66285800
S	-1.34341200	-2.62555500	-1.17267800
S	3.69034900	-0.01055600	0.79439400
S	2.02343500	2.89685900	-0.05837200
S_{14}^{-}			
S	1.16421800	-1.13119700	-1.93943700
S	-2.65829900	-0.76233400	1.41767700
S	-3.69347800	-0.19775600	-0.29993600
S	3.33346900	0.33374700	1.66350100
S	0.56498800	1.05068000	2.18486600
S	0.21790700	2.88861800	1.42474200
S	0.14965100	-2.68755000	0.97279200
S	3.21980600	-0.80006500	-1.60095200
S	-0.03092600	2.83357200	-0.68652000
S	0.65101500	-2.94540900	-1.04539500
S	-2.42292300	0.63907300	-1.73669700
S	-1.92758700	-2.71499200	1.19367900
S	3.47340400	0.84396600	-0.28475700
S	-2.04124400	2.64964800	-1.26356400
S_{15}^{-}			
S	2.55999100	-2.73204800	-0.33926200
S	-3.76526100	2.09481500	-0.28074500
S	3.29313600	2.49636800	0.31042600

S	-1.84853800	-3.09354600	0.27189200
S	-4.66146700	-1.19066600	0.15876100
S	-0.61651800	3.47941900	-0.04814600
S	-0.43593700	-1.62521900	0.78671500
S	0.94418900	-1.46249000	-0.75779400
S	3.78047900	-1.66272800	0.98100800
S	3.96895700	1.13818900	-1.02345700
S	0.58852000	2.44465200	1.20623800
S	-1.86862800	2.20870100	-1.19762300
S	-3.81922800	0.49835100	1.06901100
S	-3.20082900	-2.14310600	-1.00535700
S	5.08113200	-0.45069100	-0.13166600
S_{16}^{-}			
S	-1.17023200	1.89444600	-1.54038200
S	1.76736600	-2.42248500	1.09369100
S	3.92295400	1.50746500	-0.21889800
S	3.65973800	0.52561700	1.53306000
S	0.61618600	-1.74625600	-2.09545900
S	-1.75390400	2.18082800	1.78205600
S	-2.72406900	-1.30580600	-1.29603900
S	-1.92941200	-1.21238700	2.02208400
S	0.35801600	3.29790600	-1.94987200
S	3.69045500	-1.58068900	1.34431100
S	-2.48019900	2.70784000	-0.11383000
S	1.60926800	-3.12228400	-0.86889400
S	-1.33651100	-2.46296600	-2.34411800
S	-2.86692200	0.59016200	2.55247400
S	-3.12293800	-2.13744000	0.58112300
S	1.76020300	3.28605000	-0.48130800
S_{17}^{-}			
S	-3.75058100	-2.22520100	1.04573100
S	3.67886400	2.65649700	0.87525700
S	3.09284300	-2.83461000	-1.01516100
S	-3.05055500	3.07999000	-0.91860200
S	-5.28246800	0.47696500	-0.28231300
S	0.57935900	3.91221800	0.20000900
S	5.08012200	-0.37946900	0.13775000
S	-4.02200300	2.00395400	0.49435600
S	-4.18637900	-1.25162700	-0.75573900
S	1.23168000	-2.03073900	-1.54288000
S	3.69132400	-1.83193300	0.72230100
S	4.12018100	1.29741500	-0.66033700

S	1.65149600	2.53537700	1.40938300
S	-0.26979800	3.00005800	-1.39170400
S	-0.20740700	-3.42402700	-0.96097500
S	-0.56519200	-3.30712500	1.09625300
S	-1.79148400	-1.67774300	1.54667100
S_{18}^{-}			
S	1.56243000	0.37917900	-1.51303700
S	5.70745000	1.63200800	1.44240900
S	-4.51414000	1.33437000	1.53056500
S	-0.13360100	2.53335300	0.55544100
S	-2.81718900	1.91386600	-1.40971200
S	-2.14371900	-2.05356100	-1.41147200
S	-0.44098300	-3.13518100	-0.79986300
S	-4.59984100	2.21264400	-0.36751300
S	-1.49836900	3.41082500	-0.77155600
S	-3.98510600	-2.06057500	1.50037700
S	6.06139800	-1.39594100	-0.09321600
S	-3.79031300	-2.87757400	-0.41863300
S	4.81882100	-0.31666000	-1.21061100
S	2.44328400	-1.07984200	-0.35143000
S	0.53825300	-2.08022200	0.66193500
S	-5.42697700	-0.54717700	1.48593300
S	1.63016900	2.22436000	-0.51732800
S	6.58843200	-0.09387000	1.68771100
S_{19}^{-}			
S	-0.78795300	-0.88886700	1.24169400
S	-5.17414600	1.10879500	-0.45753100
S	2.68995500	1.93705400	1.02506900
S	3.80180300	0.51542600	-1.87751500
S	0.74155300	3.95441200	-0.98938600
S	-1.98111300	1.67448600	0.65036600
S	2.65154900	-2.66310700	-1.20437900
S	-2.73760900	-2.95339600	-0.64880000
S	2.32986400	-2.01684000	2.14806400
S	-4.27465300	-1.97747600	-1.67928900
S	2.26410400	3.92208500	0.51413600
S	4.28543100	-1.50995700	-1.84047700
S	-3.93739400	1.68892900	1.16121500
S	0.30717700	-2.35553200	2.45251800
S	-1.00759500	-1.77326400	-0.63326900
S	-1.06122000	4.26087500	-0.15037200
S	3.04818500	-3.37144500	0.71995800

S	-5.55063000	-0.95365800	-0.37164500
S	4.39269200	1.40148000	-0.06035600
S_{20}^{-}			
S	-3.56802200	0.17169100	-2.25531200
S	3.52258700	2.85714800	-0.20430800
S	-2.06631100	3.45987200	-0.61243000
S	3.95969000	-0.35926500	0.80816000
S	1.65614700	-2.57397400	-2.51442200
S	0.50906800	2.00716900	1.06030000
S	-3.67494200	2.46285000	0.25359700
S	0.78858900	-2.27936500	1.91968800
S	-0.08334400	-2.46780200	-1.33163100
S	-0.92151300	-2.00094100	3.09349100
S	-3.76878700	-1.49797500	1.30310900
S	-4.75384100	1.51671500	-1.34589500
S	-2.13246300	-0.51815000	2.21267700
S	-3.30358200	-2.19855800	-0.53615400
S	4.79235600	1.56325800	0.83893100
S	2.82551400	-0.85248000	-2.34905600
S	1.98941600	3.50070500	1.05920200
S	4.42038700	-1.22931900	-1.03021700
S	-0.52062100	2.04897000	-0.74696800
S	0.32967100	-3.61054600	0.37723900

Table S17. Cartesian coordinates of ground state S_n^+ (n = 3-20) clusters reported in Fig. 3.

a +			
S ₃	0.0000000	0.0000000	1 12077600
S	0.0000000	1.00201500	0.5608800
5	0.00000000	1.09301500	-0.50988800
3	0.0000000	-1.09301500	-0.56988800
S_4^{+}			
S	0.00000000	1.19594900	0.91832400
S	0.00000000	-1.19594900	0.91832400
S	0.00000000	-1.58598200	-0.91832400
S	0.00000000	1.58598200	-0.91832400
S ₅ ⁺			
S	-0.98674800	-1.36181800	0.00000000
S	0.24668700	-0.68834100	1.51934400
S	0.24668700	1.36925000	1.02767100
S	0.24668700	1.36925000	-1.02767100
S	0.24668700	-0.68834100	-1.51934400
S_{6}^{+}			
S	0.00000000	1.94986700	0.36454300
S	-1.68863500	0.97493400	-0.36454300
S	-1.68863500	-0.97493400	0.36454300
S	0.00000000	-1.94986700	-0.36454300
S	1.68863500	-0.97493400	0.36454300
S	1.68863500	0.97493400	-0.36454300
S_{7}^{+}			
S	0.00000000	1.72827600	1.20111800
S	-0.02243100	1.03100500	-2.00101600
S	1.29989400	-1.51534700	-0.38922700
S	0.00000000	0.00000000	2.37824900
S	-1.29989400	1.51534700	-0.38922700
S	0.02243100	-1.03100500	-2.00101600
S	0.00000000	-1.72827600	1.20111800
S _s ⁺			
S	1.31962100	1.33595000	-0.72663900
S	0.26573800	1.08460000	2.43663200
S	-0.23187400	-1.05804000	-2.40884700
S	-0.23187400	1.91067500	0.69885500
S	0.23187400	-1.91067500	0.69885500

S	-1.31962100	-1.33595000	-0.72663900
S	-0.26573800	-1.08460000	2.43663200
S	0.23187400	1.05804000	-2.40884700
S_{9}^{+}			
S	1.20264100	-1.75950000	-0.89778700
S	1.18209700	1.20485300	1.34923900
S	0.00000000	2.70545500	0.59336100
S	0.07320000	1.06972000	-2.33932000
S	-0.07320000	-1.06972000	-2.33932000
S	-1.18209700	-1.20485300	1.34923900
S	0.00000000	-2.70545500	0.59336100
S	0.00000000	0.00000000	2.58901600
S	-1.20264100	1.75950000	-0.89778700
S_{10}^{+}			
S	2.88270800	0.10885800	1.04619200
S	-2.88270800	0.10885800	-1.04619200
S	2.88270800	-0.10885800	-1.04619200
S	-2.88270800	-0.10885800	1.04619200
S	1.18575900	1.20637500	1.50319000
S	-1.18575900	1.20637500	-1.50319000
S	1.18575900	-1.20637500	-1.50319000
S	0.00000000	0.00000000	-2.73410200
S	0.00000000	0.00000000	2.73410200
S	-1.18575900	-1.20637500	1.50319000
S_{11}^{+}			
S	1.68851800	-2.13460500	1.10826800
S	-2.39463100	0.66980200	-1.21347900
S	3.13593400	0.44079400	-0.51789400
S	-0.37661900	-1.89556700	1.27245700
S	0.94045600	2.77431900	0.51626600
S	1.64120700	1.76374800	-1.15499800
S	-1.18796800	-2.39107900	-0.57203700
S	2.38502800	-1.48424700	-0.75690800
S	-2.35697200	1.90212500	0.48768700
S	-0.52776000	1.58563700	1.42984300
S	-2.94719300	-1.23092600	-0.59920600
S_{12}^{+}			
S	0.00000000	0.00000000	3.59771500
S	0.00000000	2.73061700	1.73325100
S	0.00000000	2.73061700	-1.73325100

S	0.00000000	0.00000000	-3.59771500
S	0.00000000	-2.73061700	-1.73325100
S	0.00000000	-2.73061700	1.73325100
S	1.20739600	-1.13222700	-2.33010100
S	1.05380500	2.27015000	0.00000000
S	-1.05380500	-2.27015000	0.00000000
S	-1.20739600	1.13222700	-2.33010100
S	1.20739600	-1.13222700	2.33010100
S	-1.20739600	1.13222700	2.33010100
S_{13}^{+}			
S	0.81274500	-2.16225800	-1.45806600
S	-2.59517100	0.91895700	-1.50994800
S	-0.50524900	1.17466300	-1.61764100
S	2.69347800	0.70910500	1.47894600
S	3.04994000	0.20681000	-0.50560800
S	0.45848500	3.11161800	1.00329300
S	-1.01805400	-2.05221400	1.48255600
S	2.78429500	-1.83871000	-0.82429500
S	-3.03246400	0.48719100	0.47713100
S	0.63794800	1.15725600	1.63603400
S	-0.18595000	3.12101100	-1.01132300
S	-2.94820500	-1.56786400	0.82387400
S	-0.15179700	-3.26556400	0.02504700
${\bf S}_{14}^{+}$			
S	0.95087200	-0.89145400	-1.69193200
S	-2.49696600	-0.45603100	1.54921400
S	-3.60353700	0.49346500	0.05932000
S	3.14277300	0.16471600	1.65556700
S	1.10514200	0.54621800	1.72700600
S	0.75763700	2.56902300	1.36896600
S	-0.44221900	-2.97302200	0.60305200
S	2.92527200	-1.47694700	-1.16971100
S	0.44145900	2.82723100	-0.69885000
S	-0.15345400	-2.59996000	-1.48192900
S	-2.32525900	1.04896600	-1.49142200
S	-2.39704400	-2.48450800	1.02164700
S	3.68522800	0.26555700	-0.38184100
S	-1.58990500	2.96674700	-1.06908500
${\bf S}_{15}^{+}$			
S	-0.65942800	2.44374600	-3.34941200
S	1.98370600	-2.27393800	2.72291500

S	-1.98370600	2.27393800	2.72291500
S	0.65942800	-2.44374600	-3.34941200
S	2.20887400	-3.28919500	-0.47493900
S	0.00000000	0.00000000	4.21166900
S	0.97310800	-0.41023700	-3.48568200
S	-0.97310800	0.41023700	-3.48568200
S	-0.34673000	2.96392400	-1.32751900
S	-2.60332900	1.69186600	0.81117400
S	0.00000000	1.69982800	2.99762800
S	0.00000000	-1.69982800	2.99762800
S	2.60332900	-1.69186600	0.81117400
S	0.34673000	-2.96392400	-1.32751900
S	-2.20887400	3.28919500	-0.47493900
S_{16}^{+}			
S	1.68537300	4.06885000	0.00000000
S	-1.68537300	-4.06885000	0.00000000
S	-4.06885000	1.68537300	0.00000000
S	4.06885000	-1.68537300	0.00000000
S	4.06885000	1.68537300	0.00000000
S	1.68537300	-4.06885000	0.00000000
S	-4.06885000	-1.68537300	0.00000000
S	3.42657400	0.00000000	1.05079100
S	2.42295400	2.42295400	-1.05079100
S	0.00000000	3.42657400	1.05079100
S	-2.42295400	2.42295400	-1.05079100
S	-3.42657400	0.00000000	1.05079100
S	-2.42295400	-2.42295400	-1.05079100
S	0.00000000	-3.42657400	1.05079100
S	2.42295400	-2.42295400	-1.05079100
S	-1.68537300	4.06885000	0.00000000
S ₁₇ ⁺			
S	-3.64602300	2.20447500	-0.84922100
S	3.75467200	-1.87293100	-1.26118200
S	1.77252700	-2.61706300	1.30490300
S	0.48763400	-1.10335500	0.52469600
S	-2.33064000	-2.91803400	0.22006800
S	-3.45462200	-1.39826000	1.10668500
S	2.68593400	1.32663000	-1.66091300
S	-1.16255400	1.39532400	1.24733000
S	-1.58198700	2.13437700	-0.69487300
S	4.35612600	0.06908300	-1.72715100
S	3.00694200	2.63030300	-0.06209000

S	2.19144900	1.81127400	1.68720100
S	0.31736900	2.66259500	2.00765000
S	-0.81943000	-1.92483900	-0.84705200
S	-5.01184100	-0.82528000	-0.15234100
S	-4.23078300	0.36942300	-1.67537500
S	3.66522600	-1.94372100	0.83166600
S_{18}^{+}			
S	0.00000000	3.86237700	0.81111500
S	0.97056000	-4.29367500	-0.99275000
S	-0.58663800	1.50006000	-2.87447800
S	-2.98746400	-0.74530000	1.68143800
S	0.58663800	-1.50006000	-2.87447800
S	-1.91650400	2.56661100	-1.65786500
S	1.52015000	-0.71362900	1.91611400
S	-1.52015000	0.71362900	1.91611400
S	2.98746400	0.74530000	1.68143800
S	2.03750700	3.75758000	0.38792300
S	-0.97056000	4.29367500	-0.99275000
S	2.60534400	1.80675000	-0.08641500
S	0.00000000	-3.86237700	0.81111500
S	-2.60534400	-1.80675000	-0.08641500
S	1.91650400	-2.56661100	-1.65786500
S	-2.03750700	-3.75758000	0.38792300
S	0.00000000	0.00000000	-1.53520800
S	0.00000000	0.00000000	3.16504300
${\bf S}_{19}^{+}$			
S	-4.66811800	1.59054500	-0.79660600
S	4.19594700	1.54973000	-0.83257200
S	-0.68110900	2.59519000	-1.14175400
S	3.69207700	-0.98165500	1.34630100
S	1.10640000	-3.29289100	-1.47002200
S	1.78842400	2.74198700	1.21716000
S	-2.12326700	3.66342700	-0.07471800
S	-0.54973800	-1.80708200	1.07289600
S	-0.29126500	-1.81726800	-1.01006300
S	-2.20040300	-3.00513600	1.50463100
S	-4.83422100	-1.74106400	-0.21090900
S	-3.45731300	2.29952200	0.75470600
S	-3.86904700	-1.75913100	1.63930900
S	-3.94252700	-0.27236700	-1.39360400
S	5.04166700	0.50790900	0.76322200
S	2.98501300	-2.39972700	-1.64528000

S	3.32584200	3.28990400	-0.08561400
S	4.01999900	-2.65641300	0.15239100
S	0.46163900	1.49451800	0.21052500
S_{20}^{+}			
S	4.15844800	1.05790400	1.81827400
S	0.18947200	1.91299300	0.53136200
S	1.92088300	-1.76223300	0.04844800
S	-3.48778700	0.98082700	-1.26285200
S	-0.15791700	-3.05722400	-2.24533100
S	-3.41995900	0.27432300	2.03462600
S	3.86287500	-2.34798300	-0.41419100
S	-3.65108500	3.08845300	-1.31079300
S	5.72005700	0.17390600	0.74895000
S	-0.84980800	3.71387700	0.43439500
S	3.47251500	2.72578100	0.78490200
S	1.96606800	2.10657300	-0.53795800
S	-2.14243200	-3.92550000	0.32939200
S	-1.55687900	-2.60599600	1.83622500
S	4.90216100	-0.63102600	-0.99363900
S	-1.72066900	3.80956800	-1.47406400
S	-2.09315600	-2.89904200	-1.48874700
S	-3.31889600	-1.71718700	2.55532000
S	0.88674800	-1.32725900	-1.72198600
S	-4.68064000	0.42924500	0.32766700

Reference

- 1 J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497.
- 2 C. Adamo, A. Matteo and V. Barone, Adv. Quantum Chem., 1999, 36, 45.
- 3 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 4 C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 5 J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244.
- 6 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 7 *Electronic Structure of Solids*, edited by J. P. Perdew, P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, 1991.
- 8 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1974).

- 9 S. Hunsicker, R. O. Jones and G. Gantef ör, J. Chem. Phys., 1995, 102, 5917.
- 10 J. Berkowitz and C. Lifshitz, J. Chem. Phys., 1968, 48, 4346.
- 11 J. Berkowitz, J. Chem. Phys., 1975, 62, 4074.
- 12 S. Moran and G. B. Ellison, J. Phys. Chem., 1988, 92, 1794.
- 13 R. J. Celotta, R. A. Bennett and J. K. Hall, J. Chem. Phys., 1974, 60, 1740.
- 14 R. J. H. Clark and D. G. Cobbold, Inorg. Chem., 1978, 17, 3169.
- 15 I. I. Vannotti and J. R. Morton, Phys. Rev., 1967, 161, 282.
- 16 J. M. Dyke, L. Golob, N. Jonathan and A. Morris, J. Chem. Soc., Faraday Trans., 1974, 271, 1026.
- 17 A. J. Capel, J. H. D. Eland and R. F. Barrow, Chem. Phys. Lett., 1981, 82, 496.
- 18 M. Tsuji, I. Murakami and Y. Nishimura, Chem. Phys. Lett., 1980, 75, 536.
- 19 D. J. Grant, D. A. Dixon and J. S. Francisco, J. Chem. Phys., 2007, 126, 144308.
- 20 J. Steidel, J. Pickardt and R. Steudel, Z. Naturforsch. Teil B, 1978, 33, 1554.
- 21 R. Steudel, Spectrochim. Acta Part A, 1975, 31, 1065.
- 22 J. Cioslowski, A. Szarecka and D. Moncrieff, J. Phys. Chem. A, 2001, 105, 501.
- 23 D. A. Dixon and E. Wasserman, J. Phys. Chem., 1990, 94, 5112.
- 24 D. Detry, J. Drowart, P. Goldfinger, H.Keller and H. Z. Rickert, Phys. Chem. (Frankfurt), 1967, 55, 134.
- 25 J. Berkowitz and J. R. Marqiart, J. Chem. Phys., 1963, 39, 275.
- 26 H. Rau, T. R. N. Kutty and J. R. F. Guedes de Carvalho, J. Chem. Thermodyn., 1973, 5, 833.