Supporting Materials for Enhanced thermoelectric properties of Ga-doped In₂O₃ceramicsvia synergetic band gap engineering and phonon suppression

Yong Liu^{a,b}[†], Wei Xu^c, Da-Bo Liu^a, Meijuan Yu^c, Yuan-Hua Lin^b[†], and Ce-Wen Nan^b

^aAVICBeijing Institute of Aeronautical Materials, Beijing 100095, China.

^bState Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

^cBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, China.

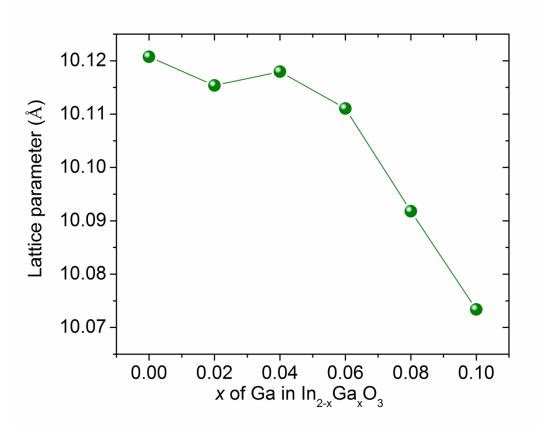


Figure.S1 The refined lattice constant versus the doping concentration in In_{2-x}Ga_xO₃

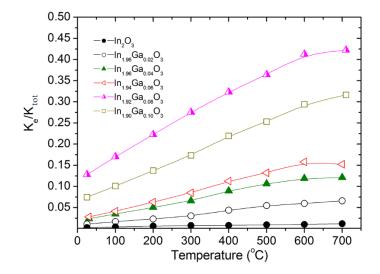


Figure. S2 Comparison of the proportion of \Box_e (the electrical contribution of thermal conductivity) in \Box_{tot} (the total thermal conductivity) for pure and doped In₂O₃ ceramics.