Electronic Supplementary Information

2 Controlled Synthesis of Monodisperse α-Calcium Sulfate

3 Hemihydrate Nanoellipsoids

4 Guangming Jiang,[†] Qiaoshan Chen,[†] Caiyun Jia,[†] Sen Zhang,[‡] Zhongbiao Wu,[†] Baohong

5 Guan^{†,*}

- 6 † Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
- 7 ‡ Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- 8 *Corresponding author. Tel.: +86-0571-88982026; Fax: +86-0571-88982026.
- 9 E-mail address: guanbaohong@zju.edu.cn

Table S1. The time elapsed for the solution to be turbid after the precursor solutions
of Ca²⁺ and SO₄²⁻ solution with different concentrations being mixed in 98.44 mol%
glycerol-water solution at 90 °C

	CaCl ₂ concentration / mM	25	32	38	44	50
	The time elapsed	8 min	3 min	~10 s	~1s	~1s
14						

²⁰ magnification.

16

22 Domain size calculation

The domain size (*D*) of the α -calcium sulfate hemihydrate (α -HH) nanoellipsoid was estimated from the diffraction peak of (004) plane in XRD pattern using the Debye-Scherrer formula:

26
$$D = \frac{0.89\lambda}{\beta\cos\theta_{\rm B}}$$

27 Here, λ is the wavelength of the incident beam (0.154 nm), β is the half-peak width 28 (rad), and θ_B is the Bragg diffraction angle (θ_B =14.62°=0.255rad). The β was 29 calibrated before use to subtract the instrument contribution by:

$$\beta = \beta_{\text{measured}} - \beta_{reference}$$

31 β_{measured} is read from the (004) peak on the XRD pattern of α -HH nanoellipsoid, while 32 the $\beta_{\text{reference}}$ is measured from that of the α -HH single crystalline with a large domain 33 of 30 - 50 µm. which were synthesized according to our previous work ^[1]. The XRD 34 patterns of α -HH nanoellipsoid and single crystalline are shown in Figure S2.

35 36

Figure S2. XRD patterns of the CSH nanoellipsoid and SCH single crystalline.

37 The β_{measured} and $\beta_{\text{reference}}$ is measured to be 0.703° and 0.120°, so

38
$$\beta = \beta_{\text{measured}} - \beta_{\text{reference}} = 0.703^{\circ} - 0.120^{\circ} = 0.583^{\circ} = 0.0102 \text{ rad}$$

39 The domain size

40
$$D = \frac{0.89\lambda}{\beta \cos \theta_{\rm B}} = \frac{0.89 \times 0.154 \text{nm}}{0.0102 \text{rad} \times \cos(0.255 \text{rad})} = 14.04 \text{nm}$$

41

42 Nitrogen adsorption-desorption isotherm analysis

43

44 **Figure S3.** (a) Nitrogen adsorption-desorption isotherm analysis of the as-synthesized 45 α-HH nanoellipsoid and the porous nanoellipsoid; (b) Pore size distribution plots in 46 the porous nanoellipsoid. The isotherms were measured at the temperature of liquid 47 nitrogen using a Quantachrome Autosorb-1 system. The sample was vacuum-dried in 48 10^{-2} Torr for 2 h at room temperature before measurement. The pore-size distribution 49 was calculated using the Barrett-Joyner-Halendan (BJH) method from the adsorption 50 branch.

51

52 **Reference:**

- 53 [1] L. C. Yang, B. H. Guan, Z. B. Wu. Characterization and precipitation mechanism of α -calcium
- 54 sulfate hemihydrate growing out of FGD gypsum in salt solution. *Sci China Ser E-Tech Sci* **2009**, 55 52 2688 2604
- 55 52, 2688-2694.