## SUPPLEMENTARY INFORMATION

## Boronyl as a terminal ligand in boron oxide clusters: Hexagonal ring $C_{2\nu}$ B<sub>6</sub>O<sub>4</sub> and ethylene-like $D_{2h}$ B<sub>6</sub>O<sub>4</sub><sup>-/2-</sup>†

Wei Wang,<sup>a</sup> Qiang Chen,<sup>a</sup> Ying-Jin Wang,<sup>a</sup> Hui Bai,<sup>a</sup> Ting-Ting Gao,<sup>a</sup> Hai-Ru Li,<sup>a</sup> Hua-Jin Zhai,<sup>\*a,b</sup> and Si-Dian Li<sup>\*a</sup>

 <sup>a</sup> Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
<sup>b</sup> State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China

\*E-mail: hj.zhai@sxu.edu.cn; lisidian@sxu.edu.cn

- Figure S1. Representative isomeric structures of  $B_6O_4$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top two structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.
- **Figure S2.** Representative isomeric structures of  $B_6O_4^-$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top three structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.
- **Figure S3.** Representative isomeric structures of  $B_6O_4^{2-}$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top two structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.
- **Figure S4.** Selected canonical molecular orbitals (CMOs) of (a)  $C_{2\nu}$  B<sub>6</sub>O<sub>4</sub> (1, <sup>1</sup>A<sub>1</sub>) and (b)  $D_{2h}$  B<sub>6</sub>O<sub>4</sub><sup>-</sup> (2, <sup>2</sup>B<sub>3u</sub>).
- **Figure S5.** The Wiberg bond indices of  $C_{2\nu}$  B<sub>6</sub>O<sub>4</sub> (1, <sup>1</sup>A<sub>1</sub>).

Figure S1. Representative isomeric structures of  $B_6O_4$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top two structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.





 $\begin{array}{c} C_{2\nu} \ ^{1}A_{1} \\ +38 \ cm^{-1} \\ 63.09 \ kcal/mol \end{array}$ 



 $C_1 {}^1A$ +49 cm<sup>-1</sup> 67.54 kcal/mol



 $C_2 {}^{1}A$ +26 cm<sup>-1</sup> 72.80 kcal/mol



 $C_1 {}^1A$ +22 cm<sup>-1</sup> 88.01 kcal/mol



 $C_1 {}^1A$ +43 cm<sup>-1</sup> 92.43 kcal/mol



 $C_1 {}^1A$ +48 cm<sup>-1</sup> 93.68 kcal/mol



C<sub>s</sub> <sup>1</sup>A' +25 cm<sup>-1</sup> 95.55 kcal/mol



 $C_1 {}^1A$ +39 cm<sup>-1</sup> 95.86 kcal/mol

**Figure S2.** Representative isomeric structures of  $B_6O_4^-$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top three structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.





 $C_{s}^{2}A'$ +31 cm<sup>-1</sup> 41.53 kcal/mol



C<sub>s</sub> <sup>2</sup>A" +37 cm<sup>-1</sup> 44.81 kcal/mol



C<sub>s</sub> <sup>2</sup>A' +67 cm<sup>-1</sup> 45.66 kcal/mol



C<sub>s</sub> <sup>2</sup>A' +80 cm<sup>-1</sup> 45.83 kcal/mol



 $\begin{array}{c} C_{2v} \ ^2B_1 \\ +29 \ cm^{-1} \\ 47.42 \ kcal/mol \end{array}$ 



 $C_1^2 A +74 \text{ cm}^{-1} 53.43 \text{ kcal/mol}$ 



 $\begin{array}{c} C_{2v} \, ^2B_1 \\ +36 \ cm^{-1} \\ 55.56 \ kcal/mol \end{array}$ 



 $C_{s}^{2}A'$ +11 cm<sup>-1</sup> 55.58 kcal/mol

**Figure S3.** Representative isomeric structures of  $B_6O_4^{2-}$  with their relative energies (in kcal/mol) indicated at the B3LYP/aug-cc-pVTZ level. Shown in *bold italic* are the relative energies for the top two structures at PBE0/aug-cc-pVTZ level. The B atom is in gray, and O is in black.





 $C_{s}^{1}A'$ +44 cm<sup>-1</sup> 73.97 kcal/mol



 $C_1 {}^1A$ +20 cm<sup>-1</sup> 84.16 kcal/mol



 $\begin{array}{c} C_{2v} \ ^{1}A_{1} \\ +125 \ cm^{-1} \\ 84.67 \ kcal/mol \end{array}$ 



 $C_{s}^{1}A$ +27 cm<sup>-1</sup> 92.16 kcal/mol



C<sub>s</sub> <sup>1</sup>A' +87 cm<sup>-1</sup> 93.69 kcal/mol



 $C_1^{-1}A + 36 \text{ cm}^{-1}$ 101.26 kcal/mol



 $C_{s}^{1}A' + 37 \text{ cm}^{-1}$ 103.85 kcal/mol



 $C_1 {}^1A' + 46 \text{ cm}^{-1}$ 104.81 kcal/mol

**Figure S4.** Selected canonical molecular orbitals (CMOs) of (a)  $C_{2\nu}$  B<sub>6</sub>O<sub>4</sub> (**1**, <sup>1</sup>A<sub>1</sub>) and (b)  $D_{2h}$  B<sub>6</sub>O<sub>4</sub><sup>-</sup> (**2**, <sup>2</sup>B<sub>3u</sub>). "SOMO" stands for the singly occupied molecular orbital.



**Figure S5.** The Wiberg bond indices of  $C_{2\nu} B_6 O_4 (\mathbf{1}, {}^{1}A_1)$ 

