Supporting Information for

Applications of ALD MnO to Electrochemical and Photoelectrochemical Water Splitting

Katie L. Pickrahn,[§] Yelena Gorlin,[§] Linsey C. Seitz, Aaron Garg, Dennis Nordlund, Thomas F. Jaramillo, and Stacey F. Bent^{*} Department of Chemical Engineering, Stanford University Stanford, CA 94305-5025, USA *sbent@stanford.edu [§]These authors contributed equally to this work.

Figure S1: SEM micrograph of (a) smooth glassy carbon (s-GC) and (b) high surface area glassy carbon (HSA-GC) substrates.

Figure S2: Plotted is a sample fitting of the Mn L-edge region XAS spectra. The sample shown is the fit of the HSA MnO_x sample after OER. The contributions of MnO_2 , Mn_2O_3 , Mn_3O_4 , and MnOOH to the fit are also plotted.

System	Electrolyte	U_{RHE} (j = 10	Reference
		mA/cm ²) (V)	
Ag Nanoparticles + α -	0.1 M KOH	~1.93	[1]
MnO ₂			
MnO _x	0.1 M KPi at pH 7	> 1.9	[2]
MnO _x	1 M KOH	> 1.9	[3]
Oxidized MnO	0.1 M KPi	> 1.86	[4]
Nanostructured	0.1 M KOH	1.77	[5]
Mn(III) oxide			
Electrodeposited	Phosphoric acid,	~1.75	[6]
MnO _x	KNO ₃ , KOH. (pH 13)	(extrapolated	
		from Tafel slope)	
ALD MnO on HSA-GC	0.1 M KOH	1.70	(this work)
Electrodeposited	0.1 M KOH	~1.6	[7]
MnO _x on HSA-GC			
(~1 micron thick)			
Massive α -Mn ₂ O3 ₃	1 M KOH	1.58	[8]
(tablet \sim 2 mm thick)			

Table S1: Comparison between other MnO_x OER Catalysts

Table S2: Comparison of MnO_x Surface Areas

							Redox Feature
	j 1.26 v		j 1.3 v		j 0.2 V		0.96 V
HSA-GC							
MnOx/s-GC							
MnOx		2.5		2.1		1.8	3.1
Annealed							
MnOx/s-GC							
MnOx		1.3		1.3		1.5	1.1

The determination of the surface area is difficult for transition metal oxide systems. Here, we compare the surface area ratios of the HSA MnO_x sample to the flat GC MnO_x sample and the annealed MnO_x sample to the flat GC MnO_x sample. The first three columns are calculated from an estimate of the surface area from the capacitive currents at 1.26 V_{RHE}, 1.3 V_{RHE}, and 0.2 V_{RHE}, respectively. The final column estimates the surface area ratio from the charge passed in the redox feature in at 0.96 V_{RHE}. All measurements are for the 5th OER sweep.

Supporting Information References

- 1. Goh, F.W.T., et al., *Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery.* Electrochimica Acta, 2013. **114**(0): p. 598-604.
- 2. Bergmann, A., et al., *Electrochemical water splitting by layered and 3D crosslinked manganese oxides: correlating structural motifs and catalytic activity.* Energy & Environmental Science, 2013. **6**(9): p. 2745-2755.
- 3. Trotochaud, L., et al., *Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution.* Journal of the American Chemical Society, 2012. **134**(41): p. 17253-17261.
- 4. Indra, A., et al., *Active Mixed-Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles.* Angewandte Chemie-International Edition, 2013. **52**(50): p. 13206-13210.
- 5. Gorlin, Y. and T.F. Jaramillo, *A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation.* Journal of the American Chemical Society, 2010. **132**(39): p. 13612-13614.
- 6. Huynh, M., D.K. Bediako, and D.G. Nocera, *A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid.* Journal of the American Chemical Society, 2014. **136**(16): p. 6002-6010.
- 7. Gorlin, Y., D. Nordlund, and T.F. Jaramillo, *The Role of Heat Treatment in Enhanced Activity of Manganese Oxides for the Oxygen Reduction and Evolution Reactions.* ECS Transactions, 2013. **58**(1): p. 735-750.
- 8. Morita, M., C. Iwakura, and H. Tamura, *The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx.* Electrochimica Acta, 1978. **23**(4): p. 331-335.