Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification

Sihui Wang, ^{*a,b*} Yixiao Li, ^{*a*} Jue Wu, ^{*a*} Bizhu Zheng, ^{*a*} Matthew J

McDonald, *a* and Yong Yang* *a*,*c*

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China. Fax: +86-592-2185753, Tel: +86-592-2185753, E-mail: <u>yyang@xmu.edu.cn</u>

^b Tianjin Institute of Power Sources, Tianjin 300384, PR China

^c School of Energy Research, Xiamen University, Xiamen 361005, PR China

Figure. S1 Variations of lattice parameters and volume of $Li_{1.2}Mn_{0.54}$. _x $Ti_xNi_{0.13}Co_{0.13}O_2$ (*x* =0, 0.04, 0.08, and 0.15) with respect to Ti content.

Figure. S2 SEM images of $Li_{1.2}Mn_{0.54-x}Ti_xNi_{0.13}Co_{0.13}O_2$. (a) x = 0, (b) x = 0.04, (c) x = 0.08, and (d) x = 0.15.

Figure. S3 XPS spectra of transition metals in Li_{1.2}Mn_{0.54-x}Ti_xNi_{0.13}Co_{0.13}O₂: (a) Ti 2p,
(b) Mn 2p, (c) Co 2p, and (d) Ni 2p spectra.

In Fig. S3 (a), $Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2$ does not show any peak in the Ti 2p spectrum. Peak intensity of the Ti 2p spectrum gradually increases with increasing Ti content. The bonding energies of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ are 458.1 eV and 463.9 eV, respectively, suggesting that the valency of Ti in the Ti-substituted materials is +4. ^{1, 2} After Ti substitution, no obvious peak shifting of $2p_{3/2}$ and $2p_{1/2}$ peaks for Mn 2p, Co 2p and Ni 2p spectrum are observed (Fig. S3 (b)-(d)), and the bonding energies of Mn $2p_{3/2}$, Mn $2p_{1/2}$, Co $2p_{3/2}$, Co $2p_{1/2}$, Ni $2p_{3/2}$ and Ni $2p_{1/2}$ are 642.1 eV, 653.6 eV, 779.9 eV, 795.2 eV, 854.6 eV, and 872.5 eV, respectively. According to the literature, ³⁻⁵ the transition metal ions are in the state of Mn⁴⁺, Co³⁺ and Ni²⁺ in all these materials, indicating that the equivalent Ti⁴⁺ substitution for partial Mn⁴⁺ does not affect the valencies of the other ions.

Figure. S4 Energy density of $Li_{1,2}Mn_{0.54-x}Ti_xNi_{0.13}Co_{0.13}O_2$ (x =0, 0.04, 0.08, and 0.15) materials cycled at a current density of 200 mA g⁻¹.

Figure. S5 SEM images of $\text{Li}_{1.2}\text{Mn}_{0.54-x}\text{Ti}_x\text{Ni}_{0.13}\text{Co}_{0.13}\text{O}_2$ electrodes after 100 cycles at a current density of 200 mA g⁻¹. (a) x = 0, (b) x = 0.04, (c) x = 0.08, (d) x = 0.15.

The custical staichious stars	Measured stoichiometry from ICP-AES						
Theoretical storemometry	Li	Ni	Co	Mn	Ti		
x = 0	1.15	0.12	0.13	0.52	-		
x = 0.04	1.23	0.13	0.14	0.50	0.04		
x = 0.08	1.22	0.12	0.13	0.44	0.08		
x = 0.15	1.15	0.12	0.13	0.39	0.16		

Table S1. Chemical composition results of ICP-AES analysis for $Li_{1.2}Mn_{0.54-}$ _xTi_xNi_{0.13}Co_{0.13}O₂ (x =0, 0.04, 0.08, and 0.15).

	$ m R_{sf}/ \Omega$				R_{ct} / Ω			
		x =	x =	x =		x =	x =	x =
x = 0	0.04	0.08	0.15	x - 0	0.04	0.08	0.15	
2nd	2.6	3.2	3.7	3.9	21.4	37.9	66.8	94.8
100th	11.4	0.4	1.0	1.2	373.2	264.1	413.9	985.7
150th	32.9	2.7	1.8	0.8	716.6	363.7	544.6	1047

Table S2. Fitting data of R_{sf} and R_{ct} for Li_{1.2}Mn_{0.54-x}Ti_xNi_{0.13}Co_{0.13}O₂.

- 1. S. Wang, J. Yang, X. Wu, Y. Li, Z. Gong, W. Wen, M. Lin, J. Yang and Y. Yang, *J. Power Sources*, 2014, 245, 570-578.
- 2. H. G. Yang and H. C. Zeng, *The Journal of Physical Chemistry B*, 2004, 108, 3492-3495.
- 3. L. Li, X. Zhang, R. Chen, T. Zhao, J. Lu, F. Wu and K. Amine, *J. Power Sources*, 2014, 249, 28-34.
- 4. G. Singh, R. Thomas, A. Kumar, R. S. Katiyar and A. Manivannan, J. *Electrochem. Soc.*, 2012, 159, A470-A478.
- 5. D. Luo, G. Li, X. Guan, C. Yu, J. Zheng, X. Zhang and L. Li, *Journal of Materials Chemistry A*, 2013, 1, 1220-1227.