Prospects and challenges of iron pyroelectrolysis in

magnesium aluminosilicate melts near minimum liquidus

temperature

N.M. Ferreira^{1,2}, A.V. Kovalevsky^{1*}, S.M. Mikhalev³, F.M. Costa² and J.R. Frade¹

1 – CICECO – Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;

2 - i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal;

3 - Nanotechnology Research Division, Centre of Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author. Tel: +351-234370263; E-mail: akavaleuski@ua.pt

Electronic Supplementary Information

Reaction	ΔG (kJ)	$V_0 = \Delta G/(nF)$ (V)
$2SiO_2(l) = O_2(g) + 2SiO(l)$	540	1.34
$2SiO_2(l) = O_2(g) + 2SiO(g)$	709	1.78
$SiO_{2}(l) = O_{2}(g) + Si(l)$	586	1.46
$SiO_2(s) = O_2(g) + Si(l)$	601	1.50
$2/3Al_2O_3(s) = O_2(g) + 4/3Al(l)$	750	1.88

Table S1 – Gibbs free energies of reduction of silica to silicon oxide or silicon.

Figure S1 – Post-mortem EDS analysis at representative locations in the Pt wire, after contacting with molten MAS-2Fe glass at 1728 K for 5 h without electrical polarization.

Figure S2 – Complex resistivity spectra for b1.5cFe cell, obtained after relative charging Q/Q_{Fe}=0.72, 0.99, 1.09, 1.19 and 1.72, where Q_{Fe} denotes the charge required to reduce the actual content of iron oxide to metallic Fe, assuming that Fe²⁺ prevails.

Figure S3 – Complex resistivity spectra for d1.5aFe cell, obtained at relative charging Q/Q_{Fe} =0.40 and 1.62, where Q_{Fe} denotes the charge required to reduce the actual content of iron oxide to metallic Fe, assuming that Fe²⁺ prevails.

Figure S4 – Dependence of interfacial capacitance of b1.5cFe cell on relative charging Q/Q_{Fe} , where Q_{Fe} denotes the charge required to reduce the actual content of iron oxide to metallic Fe, assuming that Fe²⁺ prevails.