Electronic Supplementary Information

A First-principles study on the magnetic properties of

nonmetal atoms doped monolayer phosphorene

Huiling Zheng, Jianmin Zhang, Baishun Yang, Xiaobo Du, and Yu Yan*

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, PR China E-mail: <u>yanyu@jlu.edu.cn</u>

S1. MD snapshots of P₁₄₃X(X=H, F, Cl, Br, I, B, N, As, C, Si, O, S, and Se) at 300K.

S2. MD movies of P₁₄₃X(X=H, F, Cl, Br, I, B, N, As, C, Si, O, S, and Se) at 300K.

S3. Calculated formation energies as a function of Fermi level for the substitutional dopants in monolayer phosphorene.

^{*} Corresponding author. *E-mail address*: yanyu@jlu.edu.cn (Yu Yan).

S1. MD snapshots of P₁₄₃X (X=H, F, Cl, Br, I, B, N, As, C, Si, O, S and Se) at 300K.

Figure S1. MD snapshots of $P_{143}X(X=H, F, Cl, Br and I)$. Lavender and pink balls represent P and doping X atoms, respectively.

Figure S2. MD snapshots of $P_{143}X(X=B, N \text{ and } As)$. Lavender and pink balls represent P and doping X atoms, respectively.

Figure S3. MD snapshots of $P_{143}X(X=C, Si, O, S and Se)$. Lavender and pink balls represent P and doping X atoms, respectively.

S2. MD movies of P₁₄₃X(X=H, F, Cl, Br, I, B, N, As, C, Si, O, S, and Se) at 300K.

- H-doped-300K.wmv represents the $P_{143}H$ at T=300K.
- F-doped-300K.wmv represents the $P_{143}F$ at T=300K.
- Cl-doped-300K.wmv represents the P_{143} Cl at T=300K.
- Br-doped-300K.wmv represents the P_{143} Br at T=300K.
- I-doped-300K.wmv represents the $P_{143}I$ at T=300K.
- B-doped-300K.wmv represents the $P_{143}B$ at T=300K.
- N-doped-300K.wmv represents the $P_{143}N$ at T=300K.
- As-doped-300K.wmv represents the P_{143} As at T=300K.
- C-doped-300K.wmv represents the $P_{143}C$ at T=300K.
- Si-doped-300K.wmv represents the $P_{143}Si$ at T=300K.
- O-doped-300K.wmv represents the $P_{143}O$ at T=300K.
- S-doped-300K.wmv represents the $P_{143}S$ at T=300K.
- Se-doped-300K.wmv represents the P_{143} Se at T=300K.

S3. Calculated formation energies as a function of Fermi level for the substitutional dopants in monolayer phosphorene.

Figure S4. Calculated formation energies as a function of the Fermi level for (a) H and H⁴⁻, (b) F and F²⁺, (C) Cl and Cl²⁺, (d) Br and Br²⁺, (e) I and I²⁺, (f) B and B²⁻, (h) O and O⁺ dopants in monolayer phosphorene. The zero of Fermi level corresponds to the valence-band maximum.

Figure S5. Calculated formation energies as a function of the Fermi level for (a) C and C⁻, (b) Si and Si⁻, (C) S and S⁺, (d) Se and Se⁺ dopants in monolayer phosphorene. The red dots represent the transition levels. The zero of Fermi level corresponds to the valence-band maximum.