Electronic Supplementary Information (ESI⁺)

Fabrication of nanoscale heterostructures comprised of graphene-encapsulated gold nanoparticles and semiconducting quantum dots for photocatalysis

Yuan Li,^a Nitin Chopra*,a,b,c

^a Metallurgical and Materials Engineering Department, Center for Mate-rials for Information

Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.

^b Department of Biological Sciences, The University of Alabama, Tus-caloosa, AL 35487, U.S.A.

^c Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.

*Corresponding Author

E-mail: <u>nchopra@eng.ua.edu;</u>

Tel: 205-348-4153

Samples	Diameter (nm)	Inter-particle spacing (nm)	Density (10 ⁸ /cm ²)
Au nanoparticles	47.27 ± 11.25	49.55 ± 16.85	74.51
GNPs	52.22 ± 11.33	45.14 ± 13.33	72.23
Plasma-treated GNPs	49.56 ± 12.38	46.22 ± 13.57	72.03
Acid-treated GNPs	50.62 ± 10.95	47.56 ± 14.65	70.67

Table S1 Diameter, inter-particle spacing, and density of gold (Au) nanoparticles, as-produced GNPs, and the GNPs after plasma/acid treatment pattered on the (silicon) Si substrate.

Table S2 Raman peak location (cm⁻¹) and I_D/I_G for as-produced GNPs and GNPs after plasma/acid treatment.

	D band	G band	I_D/I_G
GNPs	1319.87	1602.07	1.3 ± 0.2
acid-treated GNPs	1312.56	1599.21	1.2 ± 0.1
plasma-treated GNPs	1312.56	1596.18	1.75 ± 0.25

		Au nanoparticles	Plasma- treated Au nanoparticles	GNPs	Plasma- treated GNPs	Acid- treated GNPs	QDs
A	Au 4f _{5/2}	88.27	87.50	88.23	88.47	88.20	/
Au	Au 4f _{7/2}	84.59	84.60	84.56	84.76	84.47	/
AuO _x	Au 4f _{5/2}	/	88.90	/	89.45	/	/
	Au 4f _{7/2}	/	85.34	/	85.74	/	/
	C-C (sp ²)	/		284.78	284.78	284.72	/
C 1s	C-C (sp ³)	/		285.30	285.26	285.15	/
	π - π	/		291.05	/	/	/
	С-ОН	/		286.75	286.91	286.45	/
	О=С-ОН	/		288.81	289.14	288.71	/
0	O 1s	533.21		533.24	533.26	533.32	/
	Cd 3d _{5/2}	/		/	/	/	406.07
	Cd 3d _{3/2}	/		/	/	/	412.78
	Se	/		/	/	/	/
QDs	Zn 2p _{3/2}	/		/	/	/	1022.52
	Zn 2p _{1/2}	/		/	/	/	1045.76
	S 2p _{3/2}	/		/	/	/	162.75
	S 2p _{1/2}	/		/	/	/	163.94

Table S3 Binding energy (eV) chart derived from XPS study for Au nanoparticles, as-produced GNPs, plasma-treated GNPs, acid-treated GNPs, and the pristine quantum dots (QDs).

handa	CNDa	Plasma-	Acid-	GNP (plasma-	GNP (acid-
bonds	GNPS	GNPs	GNPs	heterostructures	heterostructures
C-H, C-C stretch	1510-1540	1510-1540	1510-1540	1510-1540	1510-1540
С-О-Н	~1450	~1450	~1450	~1450	~1450
С=О		~1690	~1690	~1690	~1690
Amide I (C=O stretch)				~1660	~1660
Amide II (C-N stretch, N-H bend)				~1550	~1550
Amide III (C-N stretch, N-H bend)				~1240	~1240

Table S4 FTIR peak locations (cm⁻¹) for the as-produced GNPs, GNPs after plasma/acid treatment, and the GNP-QD heterostructures.

	Au	Graphene	Quantum dots
Au nanoparticles	500-650	/	/
GNPs	500-650	~281	/
acid-treated GNPs	500-650	~292	/
plasma-treated GNPs	500-650	~284	/
Quantum dots	/	/	~460
GNP-QD heterostructures (covalently bonded)	~580	~305	~460
GNP-QD (physically mixed)	~550	~301	~460

Table S5 UV-vis spectra peak locations (nm) for Au nanoparticles, as-produced GNPs, and GNPs after acid/plasma treatment.

Fig. S1 SEM image of the GNPs after (a) plasma and (b) acid treatment. (c) Histogram showing the variation of particle diameter, inter-particle spacing, and density of the Au nanoparticles, as-produced GNPs, and GNPs after plasma/acid treatment. **Table S1** corresponds to (c).

Fig. S2 XPS spectra obtained in a wide-range survey scan for the Au nanoparticles, as-produced GNPs, and GNPs after plasma/acid treatment.

Fig. S3 Deconvoluted XPS spectra (Au 4f) for (a) Au nanoparticles, (b) plasma-treated Au nanoparticles (before GNP growth), (c) GNPs, and GNPs after (d) plasma and (e) acid treatment. *NOTE: Black scatters show the experimental spectra and the solid lines show the fitted data.*

Fig. S4 TEM image of the pristine CdS_xSe_{1-x}/ZnS quantum dots.

Fig. S5 XPS spectra (survey scan) of the pristine CdS_xSe_{1-x}/ZnS quantum dots and GNP-QD heterostructures dispersed on the Si substrate. *Note: The dotted line indicate the expected peak for Se 3d.*

Fig. S6 Deconvoluted XPS spectra of the pristine CdS_xSe_{1-x}/ZnS quantum dots corresponding to (a) Cd 3d, (b) Se 3d, (d) Zn 2p, (d) S 2p. *NOTE: Black scatters show the experimental spectra and the solid lines show the fitted data*.

Fig. S7 Experimental (a) absorbance and (b) reflectance spectra of the pristine quantum dots dispersed on a flat white Teflon substrate. This was used to estimate the effective refractive index of the quantum dots.

Fig. S8 Simulated (DDA method) extinction, absorbance, and scattering plots as a function of wavelength for (a) Au nanoparticles, (b) as-produced GNPs, (c) plasma-treated GNPs, and (d) GNP-QD heterostructures.

