
Supporting Information

Figure S1. Scanning Electron micrographs of synthesised calcite. 
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Figure S2. Powder XRD profile for the calcite particles. 
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Table S1.  Relative intensities of calcite Bragg peaks and comparison with a pure 
calcite reference

hkl 0 12 1 04 0 06 1 10 1 13
dÅ calcite 3.850 3.031 2.839 2.494 2.282
Intensity 12 100 6 17 25
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Figure S3. Zeta potential of a 10%wt calcite solution as a function of pH
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Figure S4. BET surface area by gas sorption and average surface area for the 
calcite sample
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Figure S5. Particle size distribution for the calcite sample
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Figure S6 (a). Decay of anisotropy, r(t), of  ACE-labelled PAA in aqueous 
solution at pH 2, and the associated single-exponential fit with the distribution of 
residuals. 
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Figure S6 (b). Decay of anisotropy, r(t), of  ACE-labelled PAA in aqueous 
solution at pH 12, and the associated single-exponential fit with the distribution 
of residuals. 
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Figure S6 (c). Decay of anisotropy, r(t), of  AmNS-labelled PAA in aqueous 
solution at pH 2, and the associated single-exponential fit with the distribution of 
residuals. 
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Figure S6 (d). Decay of anisotropy, r(t), of  AmNS-labelled PAA in aqueous 
solution at pH 12, and the associated single-exponential fit with the distribution 
of residuals. 
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Figure S6 (e). Decay of anisotropy, r(t), of  AmNS-labelled PAA in 1 wt% calcite 
at pH 7, and the associated single-exponential fit with the distribution of 
residuals. 
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Figure S6 (f). Decay of anisotropy, r(t), of  AmNS-labelled PAA in 1 wt% calcite 
at pH 11, and the associated single-exponential fit with the distribution of 
residuals. 
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Figure S7 (a) Anisotropy decays of 10-5 M ACE in water at different pH values.  
(It displays an extremely short correlation time to reach up to 0.10 ns at pH 3, 7 
and 11. And, all decays are superimposable on each other; this supposes that the 
anisotropy of free fluorophore is not affected by the pH change)
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Figure S7 (b). Anisotropy decays of 10-5 M AmNS in water at different pH 
values,    τc = ~0.1ns
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Fundamental basis of TRAMS

The basis of time-resolved anisotropy measurements (TRAMS) is as follows: A 
degree of anisotropy (r) with respect to the vertical plane can be created in a 
random distribution of fluorophores by using vertically polarized pulsed light. 
Information regarding molecular motion of this photo- selected population can 
subsequently be derived by analyses of the decay of anisotropy,

 r(t),  
r(t)= 

i∥(t)−Gi⊥(t) 
(3) 

i∥(t)+2Gi⊥(t) 

following measurement of the time-resolved fluorescence emission via a 
rotatable polariser orientated in the parallel [i∥ (t)] and perpendicular [i⊥ (t)] 
planes. G is a factor which corrects for the bias in the detection of radiation 
polarized in different planes, and was determined as 1.0 for the current 
experimental set-up by measuring i∥ (t) and i⊥ (t) with horizontally polarized 
excitation light. If a single relaxation occurs in the system then the anisotropy 
will decay via a mono exponential function 

r(t) = ro exp(−t/τc) (4)

where ro is the intrinsic anisotropy and τc is the correlation time which 
characterizes the motion of the fluorophore of interest. If the fluorophore is 
covalently attached to a polymer either during or after synthesis then 
information concerning macromolecular conformations can be obtained via 
TRAMS and the resultant τc. For example, a short τc would be associated with an 
expanded flexible chain while a large τc would be consistent with a collapsed 
slow moving globular structure. 
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