Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting Information

Figure S2. Powder XRD profile for the calcite particles.

Table S1. Relative intensities of calcite Bragg peaks and comparison with a purecalcite reference

hkl	0 12	1 04	0 06	1 10	1 13
dÅ calcite	3.850	3.031	2.839	2.494	2.282
Intensity	12	100	6	17	25

Figure S3. Zeta potential of a 10%wt calcite solution as a function of pH

Figure S4. BET surface area by gas sorption and average surface area for the calcite sample

Figure S5. Particle size distribution for the calcite sample

_										
Sample ref.: CaCO3 /5Produkt: Calcium CarbonateKunde: University of SheffieldComments:Liquid: VE-WasserDispersing agent:Operator: BDCompany: Quantachrome GmbHLocation: 85235 OdelzhausenDate : 14.07.2015Time : 13:56:18Index meas.: 3065Database name: CilasDB1						Ultrasounds: 60s (+during)Obscuration: 22 %Diameter at 10%: 0.78Diameter at 50%: 2.84Diameter at 90%: 5.60Mean diameter: 3.03FraunhoferDensity/FactorSpecific surfaceAutomatic dilution: No / NoMeas./Rins.: 30s/60s/3SOP name: 1090L 5.00				
	Customer	defined cl	asses			in volume / undersize				
X Q3	0.02 0.20	0.10 0.37	0.50 4.50	1.00 15.70	2.00 35.70	3.20 56.46	4.00 70.50	6.00 92.75	8.00 99.07	10.00 100.00
x Q3	15.00 100.00	20.00 100.00	32.00 100.00	45.00 100.00	63.00 100.00	112.0 100.00	140.0 100.00	224.0 100.00	315.0 100.00	500.0 100.00

x : diameter / µm Q3 : cumulative value / % q3 : density distribution

Figure S6 (a). Decay of anisotropy, r(t), of ACE-labelled PAA in aqueous solution at pH 2, and the associated single-exponential fit with the distribution of residuals.

Figure S6 (b). Decay of anisotropy, r(t), of ACE-labelled PAA in aqueous solution at pH 12, and the associated single-exponential fit with the distribution of residuals.

Time (ns)

Figure S6 (c). Decay of anisotropy, r(t), of AmNS-labelled PAA in aqueous solution at pH 2, and the associated single-exponential fit with the distribution of residuals.

Time (ns)

Figure S6 (d). Decay of anisotropy, r(t), of AmNS-labelled PAA in aqueous solution at pH 12, and the associated single-exponential fit with the distribution of residuals.

Time(ns)

10

-4

2

90

0

Figure S6 (e). Decay of anisotropy, r(t), of AmNS-labelled PAA in 1 wt% calcite at pH 7, and the associated single-exponential fit with the distribution of residuals.

Figure S6 (f). Decay of anisotropy, r(t), of AmNS-labelled PAA in 1 wt% calcite at pH 11, and the associated single-exponential fit with the distribution of residuals.

Time (ns)

Figure S7 (a) Anisotropy decays of 10⁻⁵ M ACE in water at different pH values. (It displays an extremely short correlation time to reach up to 0.10 ns at pH 3, 7 and 11. And, all decays are superimposable on each other; this supposes that the anisotropy of free fluorophore is not affected by the pH change)

Figure S7 (b). Anisotropy decays of 10⁻⁵ M AmNS in water at different pH values, $\tau_c = \sim 0.1$ ns

Time(ns)

Fundamental basis of TRAMS

The basis of time-resolved anisotropy measurements (TRAMS) is as follows: A degree of anisotropy (*r*) with respect to the vertical plane can be created in a random distribution of fluorophores by using vertically polarized pulsed light. Information regarding molecular motion of this photo- selected population can subsequently be derived by analyses of the decay of anisotropy,

$$r(t), r(t) = {i_{\parallel}(t) - Gi_{\perp}(t) \over (3)} {i_{\parallel}(t) + 2Gi_{\perp}(t)}$$

following measurement of the time-resolved fluorescence emission via a rotatable polariser orientated in the parallel $[i_{\parallel}(t)]$ and perpendicular $[i_{\perp}(t)]$ planes. G is a factor which corrects for the bias in the detection of radiation polarized in different planes, and was determined as 1.0 for the current experimental set-up by measuring $i_{\parallel}(t)$ and $i_{\perp}(t)$ with horizontally polarized excitation light. If a single relaxation occurs in the system then the anisotropy will decay via a mono exponential function

$$r(t) = r_0 \exp(-t/\tau_c) (4)$$

where r_0 is the intrinsic anisotropy and τ_c is the correlation time which characterizes the motion of the fluorophore of interest. If the fluorophore is covalently attached to a polymer either during or after synthesis then information concerning macromolecular conformations can be obtained via TRAMS and the resultant τ_c . For example, a short τ_c would be associated with an expanded flexible chain while a large τ_c would be consistent with a collapsed slow moving globular structure.