Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic supplementary information

Alcohol-soluble bis(*tpy*)oligothiophenes: new building units for constitutional dynamic conjugated polyelectrolytes

Pavla Bláhová, Jan Svoboda,* Ivana Šloufová, Jiří Vohlídal*

Charles University in Prague, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, CZ-128 40, Prague 2, Czech Republic. Fax:+420 224919752; Tel:+420 221951310; E-mail: jan.svoboda@natur.cuni.cz (J. Svoboda) jiri.vohlidal@natur.cuni.cz (J. Vohlídal)

Figure S1: Absorption spectra of $P_{Zn}M-N^+$ in methanol and in water after 1 and 60 days of dissolving.

Figure S2: Normalized absorption spectra of $P_{Fe}M-N^+$ in solution and in thin film and position of Raman excitation lines.

Figure S3: Normalized photoluminescence spectra of unimers in solution.

Figure S4: Normalized photoluminescence spectra of unimers in thin film.

Figure S5: Changes in UV/vis and photoluminescence spectra accompanied titrations of **M**-**Br** (left) and **M**-**N**⁺ (right) unimers with Zn^{2+} ions. Initial unimer concentration $2 \cdot 10^{-5}$ mol·dm⁻³; chloroform/acetonitrile (**Br**-unimers), methanol (**N**⁺-unimers), room temperature.

Figure S7: Dependence of the degree of polymerization, *X*, of $P_{Fe}M$ -Br on the elution time, t_{el} .

Sample	Luminescence			
	$\lambda_{ extsf{F}}$, nm (ϕ , %)		au , ps	
	solution	film	solution	film
Unimers				
M-Br	406 (3 %)	543 (7 %)	186 (6%) 593 (94%)	777 (55%) 136 (27%) 3520 (18%)
M-N⁺	404 (5 %)	461 (4 %)	122 (6%) 581 (6%)	450 (22%) 1550 (57%) 3780 (21%)
B-Br	452 (5 %)	561 (3 %)	428 (20%) 51 (71%) 965 (9%)	1800 (60%) 426 (16%) 5050 (24%)
B-N⁺	450 (5 %)	519 (3 %)	390 (19%) 35(71%) 886 (10%)	912 (50%) 218 (32%) 3280 (18%)
Zn-dynamers				
P _{zn} M-Br	440	460 (1 %)		119 (47%) 542 (42%) 1950 (11%)
$P_{zn}M-N^+$	444	473 (4 %)		481 (33%) 82 (54%) 1660 (13%)
P _{Zn} B-Br	550	525 (3 %)		866 (54%) 195 (33%) 3380 (13%)
P _{Zn} B-N⁺	550	538 (3 %)		192 (55%) 616 (49%) 2310 (6%)

Table S1: The photoluminescence maxima, λ_F , in solution and in thin film, photoluminescence quantum yield, ϕ , and lifetime of excited states, τ .