Chemical ordering phenomena in nanostructured FePt: Monte Carlo Simulations

S. Brodacka^a, M. Kozlowski^a, R. Kozubski^a, Ch. Goyhenex^b, G.E. Murch^c

^aM. Smoluchowski Institute of Physics, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348 Krakow, Poland ^bInstitut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg, France ^cThe University Centre for Mass and Thermal Transport in Engineering Materials, Priority Research Centre for Geotechnical and Materials Modelling, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia

The information presented herein is related to the article published in Physical Chemistry Chemical Physics (doi:...) in the following referred to as "article".

The graphs displayed in Fig.1 illustrate that while after 10^{10} MC steps the inner parts of the samples showed equilibrium atomic configurations, this was not the case of their PD-thick surface-affected parts. The c-L1₀ variant LRO parameter η_c and the volume fraction of the c-L1₀ variant domains γ_c are defined in the article by Eq.2 and Eq.3, respectively. The particular η_c and γ_c isotherms correspond to reduced temperatures T/T_T where $T_T = 1575$ K denotes the order-disorder L1₀ \rightarrow A1 transition temperature simulated for the bulk FePt.

Figure 1 MC time-dependence of the LRO parameter η_c within the inner parts and of the c-L1₀ variant volume fraction γ_c in the PD-thick surface-affected parts of the samples at $T/T_T = 0.76 \,(\triangledown), T/T_T = 0.83 \,(\blacktriangle), T/T_T = 0.89 \,(\textcircled{\bullet})$ and $T/T_T = 0.95 \,(\textcircled{\bullet})$.

The graphs displayed in Figs. 2-4 show the temperature dependence of the volume fractions γ_x of the x-L1₀ variant domains in the nanolayer, nanowire and nanocube areas defined in the article in Table 4.

Figure 2 Temperature dependence of the L1₀-variant volume fractions γ_x in the nanolayer: (a) in a single sample; (b) averaged over 30 independent simulation runs. Solid and open symbols correspond to the inner part and the layer adjacent to the (001) surface, respectively. γ_a : (\blacksquare , \Box); γ_b : (\blacktriangle , \triangle); γ_c : (\blacklozenge , \bigcirc).

Figure 3 Temperature dependence of the L1₀-variant volume fractions γ_x in the nanowire: (a) in a single sample; (b) averaged over 30 independent simulation runs. Inner part: γ_a (\blacksquare), γ_b (\blacktriangle), γ_c (\bigcirc); layer adjacent to the (010) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); layer adjacent to the (001) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); [100] oriented edge area: γ_a (\Box), γ_b (\triangle), γ_c (\bigcirc).

Figure 4 Temperature dependence of the L1₀-variant volume fractions γ_x in the nanocube: (a) in a single sample; (b) averaged over 30 independent simulation runs. Inner part: γ_a (\blacksquare), γ_b (\blacktriangle), γ_c (\bigcirc); layer adjacent to the (100) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); layer adjacent to the (100) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); layer adjacent to the (010) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); layer adjacent to the (001) surface: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); [100] oriented edge area: γ_a (\blacksquare), γ_b (\bigstar), γ_c (\bigcirc); [001] oriented edge area: γ_a (\boxtimes), γ_b (\bigstar), γ_c (\bigotimes); (111) vertex area: γ_a (\Box), γ_b (\bigtriangleup), γ_c (\bigcirc).