Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic Supplementary Material (ESI) for RSC Physical Chemistry Chemical Physics This journal is © The Royal Society of Chemistry 2015

Controllable fabrication of immobilized ternary CdS/Pt-TiO₂ heteronanostructures toward high-performance visible-light driven photocatalysis

Honge Wang^a, Jun Lv^{*a}, Huazhen Gao^a, Guangqing Xu^a, Dongmei Wang^a, Xinyi Zhang^b, Zhong Chen^c, Zhixiang Zheng^a, Yucheng Wu^{*a,d}

 ^a School of Materials Science and Engineering, Hefei University of Technology, Hefei,230009, China; E-mail: lvjun@hfut.edu.cn ycwu@hfut.edu.cn
^bSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia
^cSchool of Materials Science and Engineering, Nanyang Technological University, Singapore
^dKey Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China

Synthetic procedure and Photocatalytic activity test of CdS/Pt/TiO2 NTAs

Preparation of TiO₂ nanotube arrays

The anodization process was performed in a two-electrode electrochemical cell with Ti foils as the anode and a piece of highly pure graphite as the cathode. The Ti foils were anodized at 60 V for 10 h in the electrolyte containing NH_4F (0.1 M), ethylene glycol and water (10vol%). After anodization, the obtained samples were ultrasonically cleaned in ethylene glycol for 90 s to remove the debris and other impurities, then dried in air. Finally, the samples were annealed in air at 500°C for 2 h.

Deposition of Pt, CdS NPs

 Pt/TiO_2 NTAs were prepared by photoreduction deposition method. First, TiO₂ NTAs were immersed in a 14 ml aqueous solution for 2 h which contained 7 ml methanol and H₂PtCl₆·6H₂O with different concentrations. Then the samples were bubblied in nitrogen for 30 min to remove the dissolved oxygen. After that, the samples were illumined by a 500 W Mercury lamp for 30 min at room temperature. Finally, the samples were rinsed with deionized water and dried in oven at 40°C for 2 h.

CdS/TiO₂ NTAs and CdS/Pt/TiO₂ NTAs were prepared by chemical bath deposition method (CBD). First, TiO₂ NTAs were immersed in a 0.02 M cadmium chloride aqueous solution for 30 s, rinsed with deionized water for 60 s and then in a 0.02 M sodium sulfide aqueous solution for 30 s, followed with additional rinse in deionized water for 60 s. The two-step immersing procedure was termed as one CBD cycle. This deposition cycle was repeated for 13 times. Finally, the modified samples were dried in an oven at 40°C for 2 h and then were annealed at 350°C for 2 h in Argon atmosphere with the heating rate of 1° C·min⁻¹.

Photocatalytic activity test

The photocatalytic activities of as-prepared samples under visible light were tested by an XPA-7 photochemical reactor (Nanjing Xujiang Machine-electronic Plant, China). Methyl Orange (MO) aqueous solution was used as a model pollutant to be degradated. A 250 W metal halide lamp with a UV cut-off filter was used as the resource of visible light (λ >420 nm), the photoreactor was cooled by circulating water during the photodegradation process. The volume of MO aqueous solution was 12 ml with the concentration of 10 mg/L, and the size of sample was 1.5×3 cm.

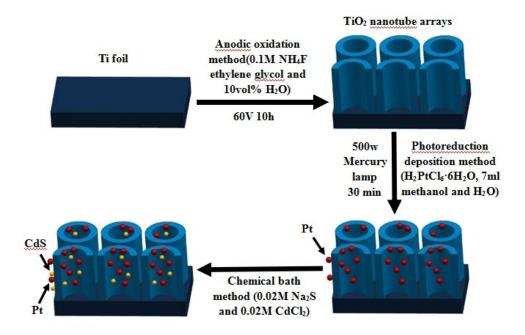


Fig.S1. Schematics of the fabrication process of CdS/Pt/TiO₂ NTAs

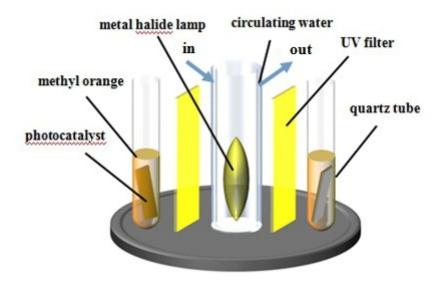


Fig.S2. Schematic diagram of XPA-7 photochemical reactor

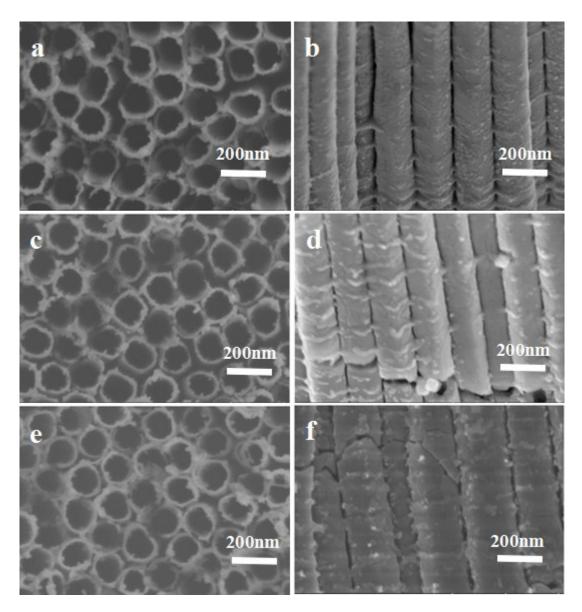


Fig.S3. FESEM morphologies of CdS/Pt/TiO₂ NTAs prepared with different H₂PtCl₆

concentrations (a,b 1 mmol·L⁻¹; c,d 2 mmol·L⁻¹; e,f 3 mmol·L⁻¹), 13 deposition cycles of CdS

Fig.S4. FESEM morphology of Pt/TiO₂ NTAs prepared with 1 mmol·L⁻¹H₂PtCl₆

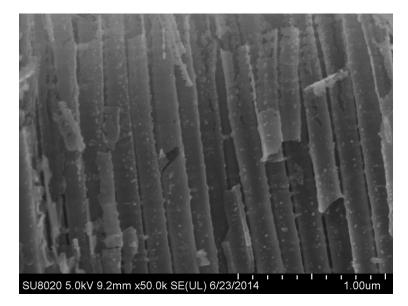


Fig.S5. FESEM morphologies of CdS/Pt/TiO₂ NTAs (CdS deposition cycle: 13 cycles; the

concentration of H₂PtCl₆: 1 mmol·L⁻¹)

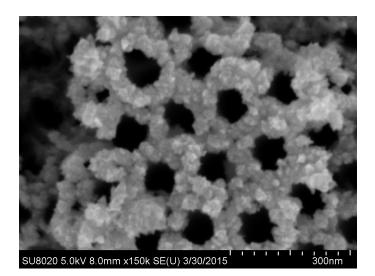
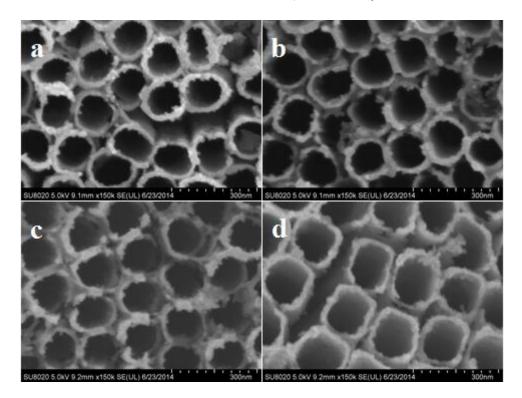



Fig.S6. FESEM morphologies of CdS/Pt/TiO₂ NTAs (CdS deposition cycle: 13 cycles; the

concentration of H₂PtCl₆: 4 mmol·L⁻¹)

Fig.S7. FESEM morphologies of CdS/Pt/TiO₂ NTAs (CdS deposition cycle: 13 cycles; the concentration of H_2PtCl_6 : 1 mmol·L⁻¹) after being reused for different times (a: 5 times; b:

10 times; c: 15 times; d: 20 times).