Supporting Information

(Total of 9 pages)

for

Spectral lineshape in nonlinear electronic spectroscopy

Artur Nenov, *a Angelo Giussani, Benjamin P. Fingerhut, Vian Rivalta, Elise Dumont, Shaul

Mukamel,^d and Marco Garavelli $*^{a,c}$

a Dipartimento di Chimica G. Ciamician, Universit`a di Bologna, V. F. Selmi 2, 40126 Bologna, Italy. Tel: +390512099495; E-mail: artur.nenov@unibo.it; marco.garavelli@unibo.it b Max Born Institute for Nonlinear Optics and Short Pulse spectroscopy, Max-Born-Strasse 2A, 12489, Berlin, Germany. c Laboratoire de Chimie, Ecole Normale Suprieure de Lyon, 46, all´ee d'Italie 69364 Lyon, France. d Department of Chemistry, University of California, Irvine, California 92697-2025, United States.

Figure S1. Valence π orbitals of pyrene.

Geometry State	¹ (gs) _{min}	¹ (Lb) _{min}	¹ (La) _{min}	(¹ La/ ¹ Lb) _{CI}
gs	0.00	-0.13	-0.12	0.18
Lb	3.42 (<0.01)	2.93	3.05	3.45
La	3.77 (0.15)	3.33	3.24	3.43

Table S1. SA-RASSCF(4,8|0,0|4,8)/SS-RASPT2/ANO-L(321,21) energies (eV) for the ground, the L_b and the L_a states of pryene at relevant characterized geometries. All the reported values are referred to the ground state minimum. In parenthesis are reported the oscillator strength for the ground state $\rightarrow L_b$ and ground state $\rightarrow L_a$ electronic transitions at the ¹(gs)_{min}.

Figure S2. Example of geometries along the L_a CAS(2,2) dynamics, at which high-level computations reveal an inversion of the energetic order of the L_b and L_a states. Bond lengths are reported (in Ångstrom).

Figure S3. Example of geometries along the L_a CAS(2,2) dynamics, at which high-level computations reveal an inversion of the energetic order of the L_b and L_a states. Bond lengths are reported (in Ångstrom). Bond length differences with respect to the ¹(gs)_{min} structure are reported.

Table S2. Cartesian coordinates x, y, z (in Å) of the optimized structures for the pyrene molecule.

		¹ (gs) _{min}	
С	-0.20367148	-2.45661691	-0.19293374
С	-1.15218720	-1.36569775	-0.16127474
С	1.11391082	-2.23811492	-0.09219851
С	-0.66333621	-0.04904205	-0.02044630
С	1.64641965	-0.90166291	0.05303075
С	0.74567760	0.18459827	0.08755353
Η	-0.58298686	-3.45747048	-0.30093173
С	-2.52415228	-1.57257875	-0.26467841
С	-1.56397310	1.03709385	0.01410574
С	1.23448527	1.50111615	0.22831859
С	-2.92921112	0.78999208	-0.09191119
С	-3.40240879	-0.50328052	-0.23007049
Η	-2.90147587	-2.57432892	-0.37186583
С	-1.03156727	2.37347110	0.15963529
Η	-3.61952409	1.61469118	-0.06606173
Η	-4.46017855	-0.67880794	-0.31059401
С	3.01146383	-0.65464812	0.15913424
С	2.60665406	1.70799436	0.33156437
С	3.48475560	0.63879744	0.29732821
Η	1.80579958	-3.06144253	-0.11829752
С	0.28610722	2.59195559	0.26030152
Η	-1.72349580	3.19676486	0.18572456
Η	2.98395575	2.70975344	0.43867846
Η	4.54248439	0.81420607	0.37843797
Η	0.66531333	3.59285845	0.36827421
Η	3.70188457	-1.47928984	0.13367630

$^{1}(Lb)_{min}$			
С	-0.690801	-2.464193	0.000000
С	0.690801	-2.464193	0.000000
С	-0.690801	2.464193	0.000000
С	0.690801	2.464193	0.000000
С	-1.428491	-1.252226	0.000000
С	1.428491	-1.252226	0.000000
С	-1.428491	1.252226	0.000000
С	1.428491	1.252226	0.000000
С	-0.689856	0.000000	0.000000
С	0.689856	0.000000	0.000000
Η	-1.228780	-3.401488	0.000000
Η	1.228780	-3.401488	0.000000
Η	-1.228780	3.401488	0.000000
Η	1.228780	3.401488	0.000000
С	-2.836767	-1.221816	0.000000
С	2.836767	-1.221816	0.000000
С	-2.836767	1.221816	0.000000
С	2.836767	1.221816	0.000000
С	-3.537580	0.000000	0.000000
С	3.537580	0.000000	0.000000
Η	-3.382568	-2.154006	0.000000
Η	3.382568	-2.154006	0.000000
Η	-3.382568	2.154006	0.000000
Η	3.382568	2.154006	0.000000
Η	-4.617256	0.000000	0.000000
Η	4.617256	0.000000	0.000000

$^{1}(La)_{min}$			
С	-0.695341	-2.441510	0.000000
С	0.695341	-2.441510	0.000000
С	-0.695341	2.441510	0.000000
С	0.695341	2.441510	0.000000
С	-1.424307	-1.237006	0.000000
С	1.424307	-1.237006	0.000000
С	-1.424307	1.237006	0.000000
С	1.424307	1.237006	0.000000
С	-0.705545	0.000000	0.000000
С	0.705545	0.000000	0.000000
Η	-1.230954	-3.379741	0.000000
Η	1.230954	-3.379741	0.000000
Η	-1.230954	3.379741	0.000000
Η	1.230954	3.379741	0.000000
С	-2.849178	-1.210583	0.000000
С	2.849178	-1.210583	0.000000
С	-2.849178	1.210583	0.000000
С	2.849178	1.210583	0.000000
С	-3.534693	0.000000	0.000000
С	3.534693	0.000000	0.000000
Η	-3.391350	-2.144258	0.000000
Η	3.391350	-2.144258	0.000000
Η	-3.391350	2.144258	0.000000
Η	3.391350	2.144258	0.000000
Η	-4.615518	0.000000	0.000000
Η	4.615518	0.000000	0.000000

	$(^{1}\text{La}/^{1}\text{L}_{b})_{CI}$	
C -0.2305326175	-2.4206838723	-0.1918497284
C -1.1530987141	-1.3625179316	-0.1610115102
C 1.1319087499	-2.1923208553	-0.0871788596
C -0.6783860304	-0.0516374927	-0.0214391440
C 1.6434173421	-0.8934155008	0.0535462693
C 0.7480954709	0.1849161063	0.0877045945
H -0.6089695627	-3.4200337348	-0.2995290832
C -2.5873415287	-1.5844268474	-0.2695426679
C -1.5637501300	1.0335947293	0.0140028912
C 1.2344475170	1.4922627535	0.2277249535
C -2.9926845498	0.7809119427	-0.0967575843
C -3.4639212238	-0.5134722103	-0.2347649111
H -2.9669052283	-2.5845349177	-0.3765440093
C -1.0449268000	2.3310427890	0.1550598984
Н -3.6843399335	1.6035593500	-0.0711467165
H -4.5215494399	-0.6890051045	-0.3158384527
C 3.0773222004	-0.6483594002	0.1638112460
C 2.6707075351	1.7232113461	0.3370032907
C 3.5461748031	0.6488868712	0.3017727837
H 1.8335491420	-3.0039272924	-0.1116789793
C 0.3181038589	2.5547209120	0.2592108618
Н -1.7353960504	3.1533498102	0.1807182495
Н 3.0511799539	2.7200221296	0.4440380240
H 4.6057709120	0.8246446852	0.3828813012
Н 0.7100646794	3.5478867511	0.3671548736
Н 3.7692607519	-1.4671544358	0.1389568107