Influence of yttrium dopant on the properties of anatase nanoparticles and the

performance of dye-sensitized solar cells

Bingxin Zhao, Jinshu Wang^{*}, Hongyi Li^{*}, Hong Wang, Xinjian Jia and Penglei Su Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China Reprint Author: wangjsh@bjut.edu.cn, lhy06@bjut.edu.cn

Tel & Fax: +8610-67391101

Measurement: The UV-Vis reflection spectra of X%Y-TiO₂ powder were measured by using a spectrophotometer (SHIMADZU, UV-2550) equipped with an integrating sphere setup. *IPCE* spectra were measured with monochromatic incident light of photon/cm² under 100mW/cm² white bias light in DC mode (PEC-S20, Peccell Co., Lid).

Sample	TIO		0.6%Y-	1.8%Y-	3%Y-	4.2%Y-	5.4%Y-
		11O ₂	TiO ₂				
Crystallite size	101	29.48	27.32	26.92	26.31	27.22	26.63
calculated from	200	29.02	26.63	26.95	24.69	26.68	26.90
diffraction peak (nm)	211	26.73	27.75	24.67	24.34	24.77	28.13

Table S1 Detail Crystallite size parameters calculated from 101, 200 and 211 diffraction peaks

Sample		T:O	0.6%Y-	1.8%Y-	3% Y-	4.2%Y-	5.4%Y-
		1102	TiO ₂				
interplanar spacing	101	3.525	3.528	3.529	3.530	3.532	3.533
(Å)	200	1.897	1.898	1.898	1.898	1.899	1.899

Table S2 Corresponding interplanar spacing from 101 and 200 diffraction angles of TiO_2 and X%Y-TiO_2

Fig. S1 TEM image of a morphous $\mathrm{TiO}_2.$ SAED pattern from the amorphous TiO_2 is

shown as insets.

Fig. S2 XRD diffractogram of anatase peak 101 and 200

Fig. S3 UV–Vis spectra of as-prepared TiO₂, X%Y-TiO₂ NPs

Experimental UV-Vis spectra of as-prepared TiO_2 and X%Y-TiO₂ are shown in Fig. S3. The absorption edge of Y-doped TiO_2 is substantially red shifted to visible region. The absorption edges of as-prepared TiO_2 and X%Y-TiO₂ appeared at 395-399 nm, corresponding band gap energies are listed in Table 1.

Fig. S4 IPCE spectra of TiO₂ and X%Y-TiO₂ based DSSCs