Supplementary data

Electron transfer within a reaction path model calibrated by constrained DFT calculations : Application to mixed-valence organic compounds.

E. Mangaud,^{*a,b*} A. de la Lande,^{*b*} C. Meier^{*a*} and M. Desouter-Lecomte^{*b,c*}

^a Laboratoire Collisions Agrégats Réactivité, UMR 5589, IRSAMC, Université Toulouse III Paul Sabatier, Bât.3R1b4, 118 route de Narbonne, F-31062, Toulouse, France, ^bLaboratoire de Chimie Physique, UMR 8000, Université Paris-Sud, Bât. 349, 15 avenue Jean Perrin, F-91405 Orsay, France, ^cDépartement de Chimie, Université de Liège, Sart Tilman, B6, B-4000 Liège, Belgium

1. Geometries

The root mean square of the distances (RMSD) is calculated with all bonds denoted on Fig. 1 (for which experimental data are available) for both donor and acceptor cycles. Geometries of each DMP_n are provided in separate *.xyz files.

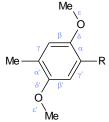


Fig. 1 Numbering of the bond lengths

2. Influence of exchange-correlation functional

On the following table, we summarize the RMSD of the equilibrium geometries obtained by different exchangecorrelation functionals as indicated.

Table 1. Choice of exchange-correlation functional - RMSD (Root mean square of bond distances) in DMP cycles between experimental and cDFT or DFT results for DMP_n (n = 0,1,2)

RMSD	cDFT	cDFT	DFT	DFT	DFT	DFT
	OPTX-PBE	PBE98-LYP	OPTX-PBE	B3LYP	M06HF	ωB97XD
DMP ₀	0.022	0.027	0.013	0.010	0.027	0.015
DMP_1	0.011	0.022	0.012	0.011	0.016	0.014
DMP_2	0.009	0.019	0.019	0.018	0.013	0.013

3. Effect of including diffuse functions

Several calculations have been performed to assess the influence of including diffuse functions. This can been seen on Tab. 2. We found a negligible effect.

Table 2. Influence of diffuse functions - RMSD (Root mean square of bond distances) in DMP cycles between 6-311g** basis set and 6-311++g** DFT results for DMP_n (n = 0,1,2) (XC functional : ω B97XD)

RMSD	6-311g** vs 6-311++g**
DMP_0	0.0005
DMP_1	0.003
DMP_2	0.001

4. Effect of dispersion correction

In the case of cDFT calculations, we present here the effect of dispersion correction for a selected exchangecorrelation functional (PBE98-LYP). As above, we found a negligible contribution.

Table 3. Influence of dispersion corrections - RMSD (Root mean square of bond distances) in DMP cycles between cDFT calculations with or without dispersion corrections for DMP_n (n = 0,1,2) (XC functional : PBE98-LYP)

RMSD	Dispersion correction	
DMP_0	0.0007	
DMP_1	0.0007	
DMP_2	0.0009	