The Role of Terahertz Polariton Absorption in the Characterization of Crystalline Iron

Sulfate Hydrates

Michael T. Ruggiero[†], Tiphaine Bardon[‡], Matija Strlič[‡], Philip F. Taday[§], Timothy M. Korter^{†*}

[†] Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244-4100, United States

[‡] UCL Institute for Sustainable Heritage, Bartlett Faculty of the Built Environment, University College London, 14 Upper Woburn Place, London WC1H 0NN, UK.

§ TeraView Limited, Platinum Building, St John's Innovation Park, Cambridge CB4 0DS, UK.

*tmkorter@syr.edu

Supplementary Information

List of Figures

Figure S.1. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 4H_2O$.

Figure S.2. Terahertz spectra of $FeSO_4 \cdot 7H_2O$ taken at 225 K (red) and 150 K (blue).

Figure S.3. Experimental PXRD of an $FeSO_4 \cdot 7H_2O$ and $FeSO_4 \cdot 4H_2O$ mixture (black), linear combination of the two individual patterns (red) and the difference (blue).

Figure S.4. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 7H_2O$.

Figure S.5. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 4H_2O$.

Figure S.6. Experimental (black) and calculated (red) PXRD of $Fe_2(SO_4)_3OH \cdot 2H_2O$.

Figure S.7. Terahertz spectrum of $FeSO_4 \cdot H_2O$ taken at 77 K.

Figure S.8. Terahertz spectrum of $Fe_2(SO_4)_3OH \cdot 2H_2O$ at 77 K.

Figure S.9. 78 K terahertz spectrum of $FeSO_4 \cdot 4H_2O$ with standard deviation in the absorption shown.

List of Tables

Table S.1. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of anhydrous FeSO₄.

Table S.2. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot H₂O.

Table S.3. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot 4H₂O.

Table S.4. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot 7H₂O.

Table S.5. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of $Fe_2(SO_4)_3OH \cdot 2H_2O$.

Table S.6. Solid-state DFT optimized atomic positions of anhydrous FeSO₄, which crystallizes *Cmcm*, with lattice parameters a = 5.251 Å, b = 8.020 Å, c = 6.642 Å.

Table S.7. Solid-state DFT optimized atomic positions of Fe₂(SO₄)₃OH ·2H₂O, which crystallizes $P2_1/m$, with lattice parameters a = 6.826 Å, b = 7.404 Å, c = 5.809 Å, $\beta = 90.254^{\circ}$.

Figure S.1. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 4H_2O.$

Figure S.2. Terahertz spectra of $FeSO_4\cdot 7H_2O$ taken at 225 K (red) and 150 K (blue).

Figure S.3. Experimental PXRD of an $FeSO_4 \cdot 7H_2O$ and $FeSO_4 \cdot 4H_2O$ mixture (black), linear combination of the two individual patterns (red) and the difference (blue).

Figure S.4. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 7H_2O.$

Figure S.5. Experimental (black) and calculated (red) PXRD of $FeSO_4 \cdot 4H_2O.$

Figure S.6. Experimental (black) and calculated (red) PXRD of $Fe_2(SO_4)_3OH\cdot 2H_2O.$

Figure S.7. Terahertz spectrum of $FeSO_4 \cdot H_2O$ taken at 77 K.

Figure S.8. Terahertz spectrum of $Fe_2(SO_4)_3OH \cdot 2H_2O$ at 77 K.

Figure S.9. 78 K terahertz spectrum of $FeSO_4 \cdot 4H_2O$ with standard deviation in the absorption shown.

Table S.1 . Simulated IR-active vibrational	frequencies (cm ⁻¹)) and intensities	(km mol ⁻¹)	of anhydrous
FeSO ₄ .				

Frequency	Intensity
136.89	0.06
150.15	108.13
157.41	41.93
191.81	146.45
209.69	413.13
227.76	0.08
245.50	177.13
305.82	239.99
343.84	205.31
471.56	85.16
472.56	0.00
584.42	83.47
587.20	149.13
663.45	252.24
942.36	268.15
978.20	2179.02
1095.32	1744.22
1142.05	1562.27

Table S.2. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot H₂O.

Frequency	Intensity
121.63	7.14
127.52	40.94
165.68	130.80
178.83	40.36
191.74	24.47
229.45	226.35
235.39	176.87
277.29	615.90
303.30	52.85
306.78	125.88
325.34	27.15
329.17	90.45
426.25	0.09
527.57	47.17
586.41	300.91
608.21	112.09
613.05	691.31
708.16	231.31
886.72	1954.31
943.45	35.10
961.57	268.56
1042.18	598.61
1086.05	1564.54
1140.22	1759.60
1617.19	167.13
3428.36	1385.50
3449.11	3867.82

Table S.3. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot 4H₂O.

Frequncy	Intensity
58.27	8.75
63.54	2.36
68.62	0.00
72.25	11.94
81.75	0.00
85.87	2.96
96.44	4.16
98.26	0.00
101.95	0.00
103.36	24.39
108.00	0.00
115.00	27.16
119.47	4.55
120.56	0.00
123.95	0.00
129.67	0.10
131.77	162.59
132.07	0.20
135.90	48.91
139.19	0.00
147.83	0.01
148.56	94.71
148.72	40.45
153.24	18.68
153.73	0.33
156.94	22.73
158.05	0.01
158.64	0.01
160.54	154.88
164.09	0.00
164.85	0.02
172.12	200.30
173.02	0.01
174.70	3.62
177.39	0.01
184.95	2.17

185.55	39.80
189.46	244.79
189.50	0.01
190.78	0.23
193.94	100.20
195.22	43.78
196.41	0.02
201.05	250.94
206.06	0.00
208.54	0.02
216.17	0.01
218.10	68.23
219.91	0.81
225.32	0.00
228.24	0.01
228.74	5.57
230.60	67.03
236.90	0.00
238.23	0.01
247.24	376.19
247.36	111.03
249.00	0.00
250.15	0.07
250.46	3.54
255.04	27.13
260.36	47.34
261.31	0.01
267.79	137.70
270.35	0.01
310.22	0.23
311.47	85.87
313.29	3.61
314.57	23.30
358.53	192.21
364.82	0.01
369.39	0.04
370.34	0.02
374.04	69.38
377.05	2.41
377.89	141.38
378.69	0.05

407.80	39.68
412.78	46.22
413.06	1.59
417.90	0.02
442.82	80.24
443.42	19.32
443.56	192.75
445.71	0.04
459.59	0.00
462.81	35.24
463.08	542.67
472.00	15.61
476.51	0.00
478.12	244.04
478.59	0.15
497.09	0.01
516.63	0.03
522.85	7.37
524.98	767.98
528.23	19.76
556.30	0.16
567.73	666.68
569.73	1.77
571.63	971.77
585.43	84.33
586.41	0.22
588.80	0.01
590.39	213.03
590.99	45.16
591.48	362.87
592.91	0.01
594.80	0.23
596.33	1075.58
598.56	0.04
598.95	0.03
601.47	132.97
605.93	430.52
610.95	0.03
613.53	0.02
629.26	100.41
639.28	1947.07

648.56	0.01
649.95	175.51
659.46	0.10
677.16	0.00
688.79	0.39
697.07	159.71
712.53	0.01
714.89	140.08
716.47	474.71
718.04	49.79
728.06	0.20
742.49	116.20
748.12	0.01
757.09	191.48
765.37	81.73
769.95	0.29
783.31	44.52
789.89	449.15
792.07	0.92
794.98	0.39
802.97	86.60
805.27	2.95
812.47	47.66
821.32	0.07
822.92	0.08
831.79	4.45
842.55	270.18
871.90	0.00
880.77	97.08
890.40	0.03
893.57	48.76
949.03	11.97
950.05	0.14
950.53	85.36
951.22	0.00
1033.66	3578.84
1034.61	81.23
1046.34	0.00
1048.40	0.02
1073.95	0.00
1082.00	0.03

1085.56	865.60
1087.54	3199.14
1123.55	1827.06
1129.91	0.00
1138.02	25.98
1163.39	0.00
1618.29	0.01
1622.71	370.79
1623.85	3.03
1629.62	92.16
1645.85	415.58
1653.31	0.01
1656.64	50.83
1666.72	0.33
1667.42	181.88
1671.43	12.64
1676.89	278.12
1678.56	0.02
1681.08	0.00
1684.82	538.74
1749.67	0.00
1749.89	0.00
3451.20	4285.27
3452.21	11.22
3459.34	2445.12
3467.56	0.05
3533.42	472.93
3535.08	60.81
3535.19	452.70
3536.23	280.11
3549.86	719.34
3554.76	3537.25
3556.28	10.23
3559.88	61.73
3614.00	0.30
3614.18	0.00
3619.50	386.88
3623.02	2915.85
3623.71	0.00
3623.98	6.44
3639.95	1595.83

3641.58	0.06
3642.35	876.95
3646.76	12.04
3655.39	541.48
3659.75	6647.16
3706.42	0.50
3709.33	1024.14
3714.87	2606.74
3729.42	0.96
3787.12	1576.44
3791.10	516.00
3796.34	0.26
3807.43	0.03

Table S.4. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of FeSO₄ \cdot 7H₂O.

Frequency	Intensity
51.63	2.60
54.01	1.91
58.09	0.00
62.97	12.01
70.42	9.05
77.69	0.29
87.05	5.38
90.99	3.67
94.23	6.70
103.00	0.06
109.62	35.94
117.65	1.80
118.49	3.23
125.94	77.26
128.72	20.09
131.48	43.09
135.02	143.00
140.27	94.72
142.37	140.68
149.56	12.14
149.57	57.79
155.37	73.05
157.17	1.15
163.32	1.73
163.72	51.46
163.93	85.14
173.06	9.38
174.45	39.05
177.59	0.86
185.89	52.44
187.18	96.88
190.82	3.16
192.47	5.05
202.64	11.64

204.30	137.31
205.90	2.30
206.95	56.83
221.09	31.12
222.45	315.06
235.00	221.42
238.31	45.98
239.85	78.91
246.75	65.47
250.43	79.54
262.45	33.93
279.89	120.71
284.71	21.69
286.29	74.52
290.52	147.35
298.66	83.47
301.37	0.09
307.41	21.81
317.90	59.65
351.89	23.85
356.65	361.90
384.57	39.05
389.65	122.21
403.25	11.66
405.51	120.80
417.25	146.14
423.99	168.07
434.84	7.23
437.43	74.16
453.63	38.49
456.67	21.44
461.98	116.88
463.30	6.78
477.16	783.35
483.65	74.48
488.61	257.46
504.28	167.44
557.75	499.76
565.85	26.57
570.34	1098.79
573.70	42.10

577.70	117.63
585.06	104.38
594.71	218.94
599.18	393.71
599.24	595.47
602.77	703.03
607.10	64.62
614.63	766.13
629.19	145.38
642.01	501.69
654.19	594.41
675.60	85.43
676.96	279.35
692.66	196.83
700.06	34.49
717.91	545.30
723.31	91.51
728.64	155.93
737.81	375.96
751.26	587.76
761.66	224.89
762.50	1173.24
768.99	578.21
776.59	239.45
783.91	88.77
790.56	103.20
808.21	807.26
819.11	208.71
842.04	36.72
844.01	37.67
853.56	346.83
864.26	49.37
885.62	226.40
891.01	235.66
896.29	5.32
910.77	187.14
935.94	28.88
938.30	223.05
954.82	877.21
966.33	722.25
1029.70	2865.38

1032.94	20.97
1053.21	192.58
1069.10	1343.64
1071.91	1346.03
1079.19	1.31
1116.24	1482.03
1123.68	940.77
1602.89	53.07
1604.50	311.04
1657.53	72.43
1660.32	482.53
1678.17	265.68
1680.85	16.67
1694.46	67.09
1694.47	55.63
1701.06	23.90
1705.03	223.49
1705.05	100.49
1707.90	167.71
1735.99	289.78
1737.16	97.56
3304.97	5063.57
3319.87	2273.69
3400.38	114.00
3414.15	6948.60
3461.74	931.49
3463.44	10.13
3477.20	5618.75
3480.08	355.64
3514.32	4109.33
3518.63	4162.44
3537.70	6155.89
3543.87	528.38
3548.73	2073.99
3561.39	23.70
3591.22	2400.28
3591.75	1103.93
3594.35	292.36
3594.52	47.16
3609.49	7691.99
3612.09	106.18

3615.76	3215.99
3622.41	323.70
3666.19	503.79
3667.18	1119.07
3680.34	1279.37
3681.46	2585.53
3712.15	2875.65
3714.40	649.02

Table S.5. Simulated IR-active vibrational frequencies (cm⁻¹) and intensities (km mol⁻¹) of $Fe_2(SO_4)_3OH \cdot 2H_2O$.

Frequency	Intensity
109.33	16.97
127.94	0.31
138.42	60.39
159.18	110.57
164.11	104.01
174.80	128.52
180.97	82.28
209.85	224.33
244.69	169.78
250.86	12.10
271.10	91.62
294.69	190.06
302.67	269.31
327.93	293.12
433.73	73.11
436.00	16.00
445.62	218.70
471.61	906.30
476.27	209.25
484.40	0.26
524.67	877.07
537.29	527.26
580.01	270.89

590.22	228.46
651.00	0.58
705.51	32.25
723.42	168.13
794.30	833.24
835.60	47.66
909.68	106.28
925.47	2398.45
963.04	268.88
1033.67	334.01
1058.23	2600.35
1128.62	1453.04
1672.50	22.54
1713.74	383.75
3400.72	1816.96
3447.43	3091.65
3453.35	5598.98
3538.55	4434.23
3802.21	342.48

Table S.6. Solid-state DFT optimized atomic positions of anhydrous FeSO₄, which crystallizes *Cmcm*, with lattice parameters a = 5.251 Å, *b* = 8.020 Å, *c* = 6.642 Å.

	a	b	c
Fe	0.000	0.000	0.000
Fe	0.000	0.000	-0.500
S	0.000	0.350	0.250
0	0.000	0.250	0.064
0	0.000	-0.250	-0.436
0	-0.265	-0.040	0.250

	а	b	c
Fe	0.000	0.000	0.000
0	0.180	0.085	0.251
0	0.230	-0.026	-0.222
Н	-0.345	0.403	0.174
Н	-0.278	-0.421	0.309
S	0.305	0.250	0.285
0	0.378	0.250	-0.475
0	0.468	0.250	0.117
0	0.049	-0.250	0.115
Н	0.136	-0.250	0.247

Table S.7. Solid-state DFT optimized atomic positions of Fe₂(SO₄)₃OH ·2H₂O, which crystallizes $P2_{I}/m$, with lattice parameters a = 6.826 Å, b = 7.404 Å, c = 5.809 Å, $\beta = 90.254^{\circ}$.