
Supplement 1

Experimental conditions 

Table S1 Select experimental conditions that provided the inspiration for the simulation results 
reported here.
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Supplement 2

Primary electron beam scanning details

Figure S2 (a) A pixel map showing all beam dwell coordinates for a single purification loop.  Each circle 
indicates a beam shot.  The beam is “on” at each pixel during real experiments but only those shots 
indicated by colored coordinates contribute significant inelastic electron energy to the pixel-of-interest 
(POI) indicated by the green circle.  The radius of this beam affected zone (BAZ) is an input parameter in 
the simulation.  Thus, in the simulation the beam is turned on only when positioned within the BAZ.  The 
raster pattern is indicated by the color map – the timing of shots increases from blue to red.  The green 
overlay indicates the region already scanned (at the current snapshot in time) by the electron beam for the 
example of energy deposition presented in (b) with the beam currently positioned at the pixel indicated by 
a “star”.
(b) The intersection of the electron interaction volume (5keV, FHWM=25nm) with the voxel stack of 
interest located at the POI.  This particular beam shot is labeled in the shot map (a) with a yellow star.  



Only the outer extremities of the beam insect the voxel stack shown positioned at the center of the 
deposit.  The voxel stack below the POI is colored based on the cumulative amount of energy deposited 
there – blue represents relatively low amounts of energy while red indicates the most.  The plot in (c) 
shows the total energy deposited as a function of energy along the voxel stack for clarity. A movie of the 
simulated beam dwell interaction with the voxel stack located at the POI in also provided in this 
Supplement.
(c) The integrated inelastic energy deposited as a function of depth into the PtC

5
 deposit at the POI.  All 

beam shots resting within the overlap of the green planar overlay, and the BAZ, in (a) have contributed 
energy to the voxel stack.



Supplement 3

General Reaction Model

The reviewer is correct to point out that the rate law typically used to model chemisorption is 2nd 
order.  The expression appearing in the main text for ∂Cim

O/∂t describing the time–dependent 
concentration of immobilized, platinum bound atomic oxygen is a simplification based on the 
assumptions and mathematical development that follows.  In general, the interaction of oxygen 
with a platinum nanoparticle surface (Ptnp) may be described by the following equations which 
are also shown schematically in figure S3 along with descriptions of each reaction.

𝑂2(𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑)

𝑃𝑡𝑛𝑝
→ 𝑂2(𝑝ℎ𝑦𝑠𝑖𝑠𝑜𝑟𝑏𝑒𝑑)     [1]

𝑂2(𝑝ℎ𝑦𝑠𝑖𝑠𝑜𝑟𝑏𝑒𝑑)

𝑃𝑡𝑛𝑝
→ 𝑂(𝑐ℎ𝑒𝑚𝑖𝑠𝑜𝑟𝑏𝑒𝑑) + 𝑂(𝑐ℎ𝑒𝑚𝑖𝑠𝑜𝑟𝑏𝑒𝑑)     [2]

𝑂(𝑐ℎ𝑒𝑚𝑖𝑠𝑜𝑟𝑏𝑒𝑑) + 𝑂(𝑐ℎ𝑒𝑚𝑖𝑠𝑜𝑟𝑏𝑒𝑑)

𝑃𝑡𝑛𝑝
→ 𝑂2(𝑝ℎ𝑦𝑠𝑖𝑠𝑜𝑟𝑏𝑒𝑑)     [3]

𝑂2(𝑝ℎ𝑦𝑠𝑖𝑠𝑜𝑟𝑏𝑒𝑑)

𝑃𝑡𝑛𝑝
→ 𝑂2(𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑)     [4]



Figure S3 Oxygen gas impinges at the substrate, i.e., Pt nanoparticle surface, (#1) where a 
certain fraction of the incident gas physisorbs at the substrate surface.  A transition between the 
physisorbed and chemisorbed states (#2) was assumed to occur instantly.  The reverse transition 
(#3) from the chemisorbed state to the physisorbed state yields weakly bound physisorbed 
oxygen gas.  Again, the physisorbed state is considered transitory.  Surface desorption from the 
physisorbed state (#4) returns oxygen to the matrix phase (or into the bulk for the model 
proposed for buried Pt nanoparticles). The number labels in the figure are matched with the 
numbered equations provided above.

The general rate equations [5–8] for the reaction model provided in equations 1–4 and in Figure 
S3 are;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2𝐶 𝑚
𝑂2

∂𝑧2
+

[𝐶𝑖𝑚
𝑂2]

𝜏𝑂2

‒ 𝛿Λ𝑂2
(1 ‒ 𝜃𝑇)    [5]

∂[𝐶𝑖𝑚
𝑂2]

∂𝑡
= 𝛿Λ𝑂2

(1 ‒ 𝜃𝑇) ‒
[𝐶𝑖𝑚

𝑂2]
𝜏𝑂2

‒ 𝑘𝐷[𝐶𝑖𝑚
𝑂2] + 0.5𝑘𝐴[𝐶𝑖𝑚

𝑂 ]2(1 ‒ 𝜃𝑂2
)     [6]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
=‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚

𝑂 ] + 2𝑘𝐷[𝐶𝑖𝑚
𝑂2] ‒ 𝑘𝐴[𝐶𝑖𝑚

𝑂 ]2(1 ‒ 𝜃𝑂2
)     [7]

𝜃𝑇 = 𝜃𝑂2
+ 𝜃𝑂    [8]

where Cm
O2 is the mobile concentration of O2 diffusing in the amorphous carbon (aC), Cim

O2 is 
the immobilized, physisorbed O2 concentration on the Pt nanoparticle surface, Cim

O is the 
chemisorbed state of O bound to Pt, O2 is the mean residence time of the physisorbed O2, kD is 
the 1st order rate constant describing the dissociative chemisorption, and kA is the 2nd order 
associative recombination of atomic oxygen.  Importantly, all concentrations are in units of 
molecules/m3, even the immobilized surface concentrations, e.g., [Cim

O2] & [Cim
O].  Typically 

represented in units of molecules/m2, this convention of 3D spatial units, rather than 2D units, 
will be described in a section below.  The term O2 is a flux term of molecules/m3/s and will also 
be described below.  

The nature of the O2 binding reaction sequence at the buried Pt interface is unknown.  As a 
result, the binding interaction of O with Pt was reduced to a single constant (), defined as the 
mean residence time of oxygen on the nanoparticle surface, in order to avoid the complication of 
the multiple rate constants introduced in equations 5–7. 



Simplified Reaction Model

In the model presented in the current version of the paper, O2 has only an unbound and mobile 
state referenced as a concentration and referred to as Cm

O2 in units of molecules /m3.  The bound 
state of physisorbed O2 is ignored in the current model which would otherwise be required to 
include the transition of physisorbed O2 to chemisorbed O on the Pt surface (reaction #2, Figure 
S3).  Thus, the assumption was made that (reaction #2, figure 1) proceeds instantaneously and 
dissolved O2 is directly adsorbed into the chemisorbed state. Moreover, (reaction #4, figure 1) 
is also considered to occur instantaneously relative to the other rate terms.  These combined 
assumptions ensure that the surface coverage of physisorbed O2 is very low at all times.  These 
assumptions have multiple consequences as will be developed below.  

Consequences of Assumptions

One consequence of the assumptions listed above is that the coverage of physisorbed immobile 
O2 tends to zero;

(1 ‒ 𝜃𝑂2
)≅0     [9]

due to the transitory nature of the physisorbed O2 state.  As a result, equations 5–8 simplify to;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2𝐶 𝑚
𝑂2

∂𝑧2
+

[𝐶𝑖𝑚
𝑂2]

𝜏𝑂2

‒ 𝛿Λ𝑂2
(1 ‒ 𝜃𝑂)    [10]

∂[𝐶𝑖𝑚
𝑂2]

∂𝑡
= 𝛿Λ𝑂2

(1 ‒ 𝜃𝑂) ‒
[𝐶𝑖𝑚

𝑂2]
𝜏𝑂2

‒ 𝑘𝐷[𝐶𝑖𝑚
𝑂2] + 0.5𝑘𝐴[𝐶𝑖𝑚

𝑂 ]2    [11]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
=‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚

𝑂 ] + 2𝑘𝐷[𝐶𝑖𝑚
𝑂2] ‒ 𝑘𝐴[𝐶𝑖𝑚

𝑂 ]2     [12]

𝜃𝑇 = 𝜃𝑂    [13]

As O2 weakly sticks to the nanoparticle surface by physisorption, the assumption is made that the 
transition to the chemisorbed state prevents O2 surface accumulation during impingment 
according to;

𝛿Λ𝑂2
(1 ‒ 𝜃𝑂) = 𝑘𝐷[𝐶𝑖𝑚

𝑂2]     [14]



Likewise, the rate of depopulation of the chemisorbed O state to the physisorbed O2 state should 
be equal to the rate of desorption of the physisorbed O2;

0.5𝑘𝐴[𝐶𝑖𝑚
𝑂 ]2 =

[𝐶𝑖𝑚
𝑂2]

𝜏𝑂2

     [15]  

Substitution of equation 14 into equation 12 and substitution of equation 15 into equation 10 
leads to;

 

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2𝐶 𝑚
𝑂2

∂𝑧2
+ 0.5𝑘𝐴[𝐶𝑖𝑚

𝑂 ]2 ‒ 𝛿Λ𝑂2
(1 ‒ 𝜃𝑂)    [16]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
= 2𝛿Λ𝑂2

(1 ‒ 𝜃𝑂) ‒ 𝑘𝐴[𝐶𝑖𝑚
𝑂 ]2 ‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚

𝑂 ]     [17]

In order to define a ‘mean residence time’ for a 2nd order reaction, a single instance of the 
variable [Cim

O] is set as a constant [Cim
O]o, in the 2nd term in equation 17, which is the mean 

immobilized O concentration integrated over an entire experiment.  This development is shown 
below in equation 18;

𝑘𝐴[𝐶𝑖𝑚
𝑂 ][𝐶𝑖𝑚

𝑂 ] =  {𝑘𝐴[𝐶𝑖𝑚
𝑂 ]𝑜}[𝐶𝑖𝑚

𝑂 ] = {1
𝜏}[𝐶𝑖𝑚

𝑂 ]     [18]

However, with this method, kA may only be recovered after a simulation is executed.   Thus, a 
mean residence time for atomic O on Pt is specified by , the simulation is executed and only 
then is kA found.  Thus, the value of () is input into the simulation to affect the atomic O binding 
time.  This simplification has the effect of discounting O recombination during periods with 
large concentrations of bound O and overestimates O recombination during periods of relatively 
low O coverage.  

Inserting  in place of kA[Cim
O] into equations 16–17 yields;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2[𝐶 𝑚
𝑂2]

∂𝑧2
+ 0.5

[𝐶𝑖𝑚
𝑂 ]

𝜏
‒ 𝛿Λ𝑂2

(1 ‒ 𝜃𝑂)    [19]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
= 2𝛿Λ𝑂2

(1 ‒ 𝜃𝑂) ‒
[𝐶𝑖𝑚

𝑂 ]
𝜏

‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚
𝑂 ]     [20]



Bound Oxygen Concentration Conversion (2D ↔ 3D)

The volume (3D) concentration of immobile atomic oxygen is defined as;

[𝐶𝑖𝑚
𝑂 ] = [𝑎𝑡𝑜𝑚𝑠

𝑚3 ]     [21]

The total number of bound O atoms per simulation voxel is;

[𝐶𝑖𝑚
𝑂 ] × ∆𝑧3 = [𝑎𝑡𝑜𝑚𝑠

𝑚3 ] × [ 𝑚3

𝑣𝑜𝑥𝑒𝑙] = [𝑎𝑡𝑜𝑚𝑠
𝑣𝑜𝑥𝑒𝑙 ]     [22]

where z3 is the voxel volume.

The total, mean nanoparticle surface area contained within the voxel is;

𝜌𝑛𝑝 × 4𝜋𝑟 2
𝑛𝑝 × ∆𝑧3 = [𝑛𝑝

𝑚3] × [𝑚2

𝑛𝑝] × [ 𝑚3

𝑣𝑜𝑥𝑒𝑙] = [ 𝑚2

𝑣𝑜𝑥𝑒𝑙]     [23]

where np is the average nanoparticle density in the deposit and rnp is the mean radius of the 
nanoparticle distribution.  The acronym np indicates ‘nanoparticle’.   The 2D surface 
concentration of immobile atomic oxygen Cim

O(2D) is related to the 3D volume concentration by 
dividing equation 22 by equation 23;

[𝐶 𝑖𝑚
𝑂(2𝐷)] =

[𝐶𝑖𝑚
𝑂 ]∆𝑧3

4𝜋𝑟 2
𝑛𝑝𝜌𝑛𝑝∆𝑧3

=
[𝐶𝑖𝑚

𝑂 ]
4𝜋𝑟 2

𝑛𝑝𝜌𝑛𝑝

= [𝑎𝑡𝑜𝑚𝑠

𝑚2 ]     [24]

Further, the surface coverage of immobile atomic oxygen (O) is simply;

𝜃𝑂 =
[𝐶 𝑖𝑚

𝑂(2𝐷)]
𝑠𝑑(𝑂)

=
[𝐶𝑖𝑚

𝑂 ]
4𝜋𝑟 2

𝑛𝑝𝜌𝑛𝑝𝑠𝑑(𝑂)

     [25]

where sd(O) is the atomic oxygen site density on the Pt nanoparticle surface.

Mobile, Dissolved Oxygen Flux striking the Pt Nanoparticle Surface (2D ↔ 
3D)

The dissolved flux of mobile O2 that sticks ( = sticking probability upon impact which we 
assume is constant at low coverages) to the nanoparticle surface area (O2) is;



𝛿Φ𝑂2
= [ 𝑂2

𝑚2𝑠]     [26]

Ultimately, an expression for the number of O2 adhesion events with Pt surface per unit volume 
is needed because equations [19-20] have units of molecules/m3/s.  Toward this aim, equation 23 
is multiplied by 26 yielding;

𝛿Φ𝑂2
× 𝜌𝑛𝑝∆𝑧34𝜋𝑟 2

𝑛𝑝 = [ 𝑂2

𝑚2𝑠] × [ 𝑚2

𝑣𝑜𝑥𝑒𝑙] = [ 𝑂2

𝑣𝑜𝑥𝑒𝑙 ∙ 𝑠]     [27]

and subsequently dividing by the cubic voxel volume yields the expression–of–interest;

𝛿Φ𝑂2
𝜌𝑛𝑝∆𝑧34𝜋𝑟 2

𝑛𝑝 ×
1

∆𝑧3
= [ 𝑂2

𝑣𝑜𝑥𝑒𝑙 ∙ 𝑠] × [𝑣𝑜𝑥𝑒𝑙

𝑚3 ] = 𝛿Φ𝑂2
𝜌𝑛𝑝4𝜋𝑟 2

𝑛𝑝 [ 𝑂2

𝑚3𝑠]     [28]

where the number of impinging O2 molecules on all nanoparticle surfaces contained within the 
voxel volume is;

Λ𝑂2
= Φ𝑂2

𝜌𝑛𝑝4𝜋𝑟 2
𝑛𝑝 [ 𝑂2

𝑚3𝑠]     [29]     

 

Rate Equations for the Case of Nanoparticle Substrate

Starting from the simplified rate equations derived above and reproduced here;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2[𝐶 𝑚
𝑂2]

∂𝑧2
+ 0.5

[𝐶𝑖𝑚
𝑂 ]

𝜏
‒ 𝛿Λ𝑂2

(1 ‒ 𝜃𝑂)    [19]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
= 2𝛿Λ𝑂2

(1 ‒ 𝜃𝑂) ‒
[𝐶𝑖𝑚

𝑂 ]
𝜏

‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚
𝑂 ]     [20]

the equation set is converted to the case of a substrate consisting of a nanoparticle distribution 
characterized by (1) a mean, dissolved nanoparticle density and (2) an average nanoparticle 
radius by replacing O2 with equation 29 and O with equation 25;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2[𝐶 𝑚
𝑂2]

∂𝑧2
+ 0.5

[𝐶𝑖𝑚
𝑂 ]

𝜏
‒ 𝛿Φ𝑂2

𝜌𝑛𝑝4𝜋𝑟 2
𝑛𝑝(1 ‒

[𝐶𝑖𝑚
𝑂 ]

4𝜋𝑟 2
𝑛𝑝𝜌𝑛𝑝𝑠𝑑(𝑂)

)    [30]



∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
= 2𝛿Φ𝑂2

𝜌𝑛𝑝4𝜋𝑟 2
𝑛𝑝(1 ‒

[𝐶𝑖𝑚
𝑂 ]

4𝜋𝑟 2
𝑛𝑝𝜌𝑛𝑝𝑠𝑑(𝑂)

) ‒
[𝐶𝑖𝑚

𝑂 ]
𝜏

‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚
𝑂 ]     [31]

Further, 4rnp
np can be moved into the terms in brackets;

∂[𝐶 𝑚
𝑂2]

∂𝑡
= 𝐷𝑂2

∂2[𝐶 𝑚
𝑂2]

∂𝑧2
+ 0.5

[𝐶𝑖𝑚
𝑂 ]

𝜏
‒ 𝛿Φ𝑂2(𝜌𝑛𝑝4𝜋𝑟 2

𝑛𝑝 ‒
[𝐶𝑖𝑚

𝑂 ]
𝑠𝑑(𝑂))    [32]

∂[𝐶𝑖𝑚
𝑂 ]

∂𝑡
= 2𝛿Φ𝑂2(𝜌𝑛𝑝4𝜋𝑟 2

𝑛𝑝 ‒
[𝐶𝑖𝑚

𝑂 ]
𝑠𝑑(𝑂)) ‒

[𝐶𝑖𝑚
𝑂 ]

𝜏
‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚

𝑂 ]     [33]

These equations appear in the main text as equations 5–6.

Supplement 4

Energy “Concentration” Definition

The concentration of deposited electron energy is defined as

[𝐶𝑒𝑉] = [𝑒𝑉

𝑚3]     [1]

This supplement is concerned with the derivation of CeV.  The use of the term “concentration” 
implies a uniform distribution of a solute dissolved in a second, homogenous phase.   Under 
these conditions, the introduction of a cubic volume element around the concentrated region 
should experience a uniform flux of solute at each face.  The distribution of secondary electrons 
(SE) generated in the bulk of a solid during the elastic scattering of primary electron trajectories 
emulate this criteria for three reasons.  First, a significant fraction of inelastic electron energy 
loss goes toward the production of secondary electrons (> 10% for most materials) required to 
generate the “solute”.  Second, SEs are generated nearly randomly along any given PE trajectory 
granted that the selected voxel size has an edge dimesion much larger than the atomic spacing in 



the crystal. In the limit of a large number of incident electrons a homogeneous and uniform 
distribution of SEs is created.  Lastly, SEs are emitted isotropically when created such that when 
averaged over a large number of incident trajectories the flux of SEs entering and exiting a voxel 
at each face will be equal.  The amorphous carbon (aC) matrix provides the homogeneous 
medium to support SE transport.  Perhaps most importantly, SEs also exhibit “diffusive-like” 
behavior.  A conventional solute exhibits periods of directed motion followed by periods of 
scattering, the later due the continuous motion of the solvent.  In part, an SE mimics diffusive 
motion owing to the fact that the SE is characterized by a mean free path () a value typically a 
few nanometers for most materials.  This provides the directed motion of the SE.  The SE is 
either (1) absorbed into the crystal’s electronic structure, (2) liberated as heat, or (3) emitted 
yielding the “scattering” element of diffusion.  In is left as an open question as to whether 
heating or electron impact by way of SEs is driving the carbon oxide formation process but it is 
certainly related to the deposited energy liberated from the electron interaction volume. In this 
way, the seemingly random generation of SEs in a voxel as a large number of primary electrons 
pass through the voxel emulates the trajectory expected of a diffusing solute.   The difference 
being that the random generation of the next SE by a future PE trajectory provides the next 
period of projected motion.  Figure S4 illustrates the concept of an SE ‘concentration’.



Figure S4 A schematic illustration of the sampling of multiple primary electron (PE) trajectories, 
shown in cross–section, as they enter a voxel intersecting the substrate surface.  The PE change 
direction slightly, on average 3–5 degrees, due to (b) elastic scattering.  In the Monte Carlo 
model elastic scattering occurs at discrete instances.  (c) Secondary electrons (SEs) are generated 
effectively at random along the PE trajectories providing a homogeneous distribution on of SEs 
integrated over many PE trajectories.  Moreover, their emission occurs in a random direction 
when sampling a region much larger than the atomic spacing of the underlying crystal.  As a 
result, (d) aspects of SE transport mimic the behavior solute diffusion in a solvent. 



Calculation of Energy Concentration (CeV)

CeV is derived by tracking the 3D spatial extent of electron energy loss for a host of primary 
electron trajectories in the solid of interest generated using a Monte Carlo electron scattering 
simulation.  The elastic scattering trajectory for each incident electron is overlaid with a 3D 
cubic voxel domain and the inelastic energy loss along the path length (s) per voxel (dE/ds) is 
tabulated using;

𝛼
𝑑𝐸
𝑑𝑠

Δ𝑠 = [ 𝑒𝑉
𝑣𝑜𝑥𝑒𝑙]     [2]

where s is the path length travelled by the primary electron through the current voxel in the x, y 
and z coordinates and  is a tuning parameter spanning the range (0-1) that is modulated to yield 
the correct number of surface emitted secondary electrons according to the secondary electron 
coefficient.   accounts for the fact that electron energy loss has several pathways including SE 
generation, bulk plasmon excitation and x–ray creation, etc.  Once the correct surface emission 
of SEs is tuned for a given material it is assumed that the bulk emission of SEs also replicates 
reality.  The secondary electron coefficient for PtC5 is SE=0.3 which required a=0.33 at a 
primary beam energy of Eo=5keV.  SE is calculated using;

𝛿𝑆𝐸 =
1
𝑛𝑒

𝛼
𝜀 ∑

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑣𝑜𝑥𝑒𝑙𝑠

𝑑𝐸
𝑑𝑠

Δ𝑠 = [𝑆𝐸
𝑃𝐸]     [3]

where () is the energy required to create a secondary electron and (ne) is the total number of 
incident primary electrons.  The summation over all surface voxels is required in order to obtain 
SE.

The expression dE/ds is the Joy and Luo modified Bethe expression for electron energy loss in 
the solid;

𝑑𝐸
𝑑𝑠

=‒ 78,500
𝑍

𝐴𝐸
𝑙𝑛(1.166(𝐸 + 0.85𝐽)

𝐽 )     [4]

and Z is the atomic number of solid, A is the atomic weight, E is the primary electron energy and 
J is the mean ionization potential of the solid (Y. Lin and D. C. Joy, “A new examination of 
secondary electron yield data”, Surface and Interface Analysis 37, 895 (2005)).  Each voxel has 
a Z, A, and J based on the Pt/C ratio in the voxel.  

A statistically significant total number of primary electrons (ne) are simulation in order to 
produce a smooth electron energy loss distribution in the spatial coordinate.  The energy loss rate 
for a specific current yields an electron inelastic energy loss spatial distribution, i.e., a power 
density function (Pd);



𝑃𝑑 =
𝑖𝑏

𝑞Δ𝑧3[ 1
𝑛𝑒

∑
𝑛𝑒

(∫
𝑠𝑇

𝑑𝐸
𝑑𝑆

𝑑𝑠)] = [ 𝑒𝑉

𝑚3𝑠]     [5]

where sT is the total elastic scattering path length per electron in the solid, q is a charge of an 
electron and ib is the primary beam current.  In a given simulation, upon specification of ib and 
the finite difference time step (t);

[𝐶𝑒𝑉] = 𝑃𝑑Δ𝑡     [6]

Physical Interpretation of [CeV]

Electron beam induced etching at a vapor–substrate interface is typically represented by the 
following expression which presents the vertical etch rate (dh/dt) along the surface normal;

𝑑ℎ
𝑑𝑡

=‒ Ω𝑎𝐶 × 𝜎 × Φ
𝑒 ‒ × [𝐶 𝑖𝑚

𝑂(2𝐷)] = [ 𝑚3

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒] × [𝑚2

𝑒 ‒ ] × [ 𝑒 ‒

𝑚2𝑠] × [𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚2 ] = [𝑚
𝑠 ]     [5]

The atomic volume of amorphous carbon (aC), the electron impact dissociation cross–section 
for a surface adsorbed etchant molecule (), the incident electron flux at the surface (e-) and the 
surface (2D) concentration of adsorbed etchant, in this example atomic O, [Cim

O(2D)] all effect the 
etch rate. 

In the model presented in this work, the consumption of amorphous carbon is treated using a 2nd 
order reaction rate model of the form; 

∂[𝑎𝐶]
∂𝑡

=‒
2
3

× 𝑘 × [𝐶𝑒𝑉] × [𝐶𝑖𝑚
𝑂 ] = [𝑎𝐶

𝑂 ] × [ 𝑚3

𝑒𝑉 𝑠] × [𝑒𝑉

𝑚3] × [ 𝑂

𝑚3] = [ 𝑎𝐶

𝑚3 𝑠]     [6]

and the 2/3 factor accounts for the fact that 2/3C atoms (from the amorphous matrix) is liberated 
per O when the average reaction by–product is CO1.5.  This 2/3 factor will be dropped in the 
following development in order to focus on the relationship between  and k.  Equation 6 can be 
converted to an etched volume;

∂([𝑎𝐶]∆𝑧3Ω𝑎𝐶)
∂𝑡

=
∂𝑉𝑎𝐶

∂𝑡
=‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚

𝑂 ]Δ𝑧3Ω𝑎𝐶 = [𝑚3

𝑠 ]     [6]

Similarly, equation 5 can also be converted in a volumetric etch rate;



𝑑(ℎ∆𝑧2)
𝑑𝑡

=‒ Ω𝑎𝐶𝜎Φ
𝑒 ‒ [𝐶 𝑖𝑚

𝑂(2𝐷)]∆𝑧2 = [𝑚3

𝑠 ]     [7]

Multiplying the right hand side by z/z makes it possible to convert [Cim
O(2D)] into [Cim

O];

𝑑𝑉𝑎𝐶

𝑑𝑡
=‒ Ω𝑎𝐶𝜎Φ

𝑒 ‒ [𝐶 𝑖𝑚
𝑂(2𝐷)]∆𝑧2∆𝑧

∆𝑧
=‒ Ω𝑎𝐶𝜎Φ

𝑒 ‒
[𝐶 𝑖𝑚

𝑂(2𝐷)]
∆𝑧

∆𝑧3 =  ‒ Ω𝑎𝐶𝜎Φ
𝑒 ‒ [𝐶𝑖𝑚

𝑂 ]∆𝑧3   [8]

The volume–based etch rate has now been expressed in terms of a dissociation cross–section 
(equation 6) and a 2nd order rate constant (equation 8).  Setting these two equations equal yields;

‒ Ω𝑎𝐶𝜎Φ
𝑒 ‒ [𝐶𝑖𝑚

𝑂 ]∆𝑧3 =‒ 𝑘[𝐶𝑒𝑉][𝐶𝑖𝑚
𝑂 ]Δ𝑧3Ω𝑎𝐶     [9]

where aC, z3 and [Cim
O] disappear leaving;

𝜎Φ
𝑒 ‒ =‒ 𝑘[𝐶𝑒𝑉]     [10]

with the units on each side distributed according to;

[𝑚2

𝑒 ‒ ] × [ 𝑒 ‒

𝑚2 𝑠] = [ 𝑚3

𝑒𝑉 𝑠] × [𝑒𝑉

𝑚3]     [11]

An initial inspection of equation 10 makes it difficult to rationalize a physical link between  and 
k considering the introduction of time units in k.  In an attempt to derive a physical meaning from 
equation 10, the right hand side of equation 10 will be further developed.  The electron flux at 
the surface can be recovered on the right hand side of equation 10 using equations 3 and 4 above;

𝑘[𝐶𝑒𝑉] = 𝑘𝑃𝑑∆𝑡 =
𝑘∆𝑡
∆𝑧 { 𝑖𝑏

𝑞Δ𝑧2[ 1
𝑛𝑒

∑
𝑛𝑒

(∫
𝑠𝑇

𝑑𝐸
𝑑𝑆

𝑑𝑠)]} =
𝑘∆𝑡
∆𝑧

Φ
𝑒 ‒      [12]

therefore; 

𝜎 =   
𝑘∆𝑡
∆𝑧

     [13] 

The fundamental 2nd order rate constant applicable for the physical model used here is;

𝑘 = 4𝜋𝐷𝑒𝑓𝑓
𝑂2

∆𝑟     [14]

where Deff
O2 is the effective diffusion coefficient which accounts for the diffusion + binding and 

the r is the radius of interaction.  The form of equation 14 was derived in S7.  This value of k 
was derived from the rate constant for a diffusion–limited reaction for isotropic spheres of radius 



r1 and r2 with diffusion coefficients of D1 and D2 (M. von Smoluchowski, Phys. Z 17, 557 (1916)) 
where species (1) is the secondary electron and species (2) is oxygen (O2).

The effect of secondary electrons is introduced in r by;

∆𝑟 = 𝑟𝑂 + 𝜆𝑆𝐸     [15]

where rO is the radius of bound atomic O and lambda is the mean free path SE of an SE in the 
amorphous carbon matrix.  Due to chemisorption, Deff

O2 is dominated/rate–limited by binding 
such that changes in the time step for magnitudes much less the binding time have a negligible 
effect on Deff

O2.  As a result;

Δ𝑡≅
∆𝑟

𝐷𝑒𝑓𝑓
𝑂2

=
𝑟𝑂 + 𝜆𝑆𝐸

𝐷𝑒𝑓𝑓
𝑂2

     [16]

and z = r for this example so;

𝜎 =   
𝑘∆𝑡
∆𝑧

=
[4𝜋𝐷𝑒𝑓𝑓

𝑂2
(𝑟𝑂 + 𝜆𝑆𝐸)](𝑟𝑂 + 𝜆𝑆𝐸)

(𝑟𝑂 + 𝜆𝑆𝐸)𝐷𝑒𝑓𝑓
𝑂2

= 4𝜋(𝑟𝑂 + 𝜆𝑆𝐸)2     [17]

yielding a collision cross-section of form 4r2 for a precursor molecule distributed in a 3D 
volume versus the traditional form of r2 for the collision cross-section of a precursor molecule 
bound at a planar, 2D surface.



Supplement 5

O2 flux impinging on nanoparticle surfaces by diffusion

A single particle tracking, random walk Monte Carlo simulation was used to derive an 
expression for the oxygen impingement rate (O2) on the buried nanoparticle surface area as a 
function of nanoparticle radius rnp(z,t) and nanoparticle site density np. A key assumption of the 
simulation was an increase in the mean nanoparticle radius (rnp) at constant nanoparticle site 
density (np), an assumption that is consistent with TEM observations of real samples.  The input 
parameters for the simulation were the diffusion coefficient of molecular oxygen in the 
amorphous carbon matrix (DO2), np and rnp for a given PtCx composition.  A simple cubic 
nanoparticle packing was assumed.

A simulation domain was generated with a single nanoparticle (emulating Pt) located at the 
center of a cubic domain which served as a model for the aC.  The cubic domain had an edge 
length that preserved the nanoparticle site density;

𝑒𝑑𝑔𝑒 = 3
1

𝜌𝑛𝑝
   [1]

and was discretized into a voxel domain where the voxel edge length was selected as much 
smaller (x=0.1nm) than the nanoparticle radius.  A single particle representing the O2 molecule 
mimic was introduced at the unoccupied corner of the simulation domain and allowed to freely 
diffusive on the cubic grid of voxels (figure S5a).  Random displacements of the particle were 
executed by moving the particle randomly selecting one of six possible nearest neighbor lattice 
positions.  The time expired per displacement was linked to diffusion property and lattice 
spacing (x) via;

∆𝑡 =
∆𝑥2

6𝐷𝑂2

   [2]

the familiar mean squared displacement criteria for diffusion.  Periodic boundary conditions 
were imposed at the faces of the simulation domain in order to emulate an infinite deposit.  The 
virtual molecule was allowed to explore the domain for Nj=50,000,000 jumps per nanoparticle 
radius.  This procedure was repeated for each nanoparticle radius for a vector of input sizes rnp.  
The integrated number of collisions with the nanoparticle surface was collected as a function of 
the total number of particle displacements;



𝑛𝑐(𝑟𝑛𝑝)

𝑁𝑗∆𝑡
 [𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠

𝑠 ]   [3]

(figure S5b) and from this value the molecular flux at the nanoparticle surface was obtained;

Φ𝑂2
(𝑟𝑛𝑝) = (𝑛𝑐(𝑟𝑛𝑝)

𝑁𝑗∆𝑡 ) 1

4𝜋𝑟 2
𝑛𝑝

  [4]

The functional behavior of O2 vs rnp was well fit using a 2nd order polynomial;

Φ𝑂2
(𝑟𝑛𝑝) = 𝐶1𝑟 2

𝑛𝑝 + 𝐶2𝑟𝑛𝑝 + 𝐶3   [5]

and the result of this fit is shown in figure S3c.  Importantly, the concentration of the test particle 
in each simulation is a function of the nanoparticle radius because the nanoparticle itself 
occupies a portion of the available volume;

𝐶𝑟𝑒𝑓
𝑂2

(𝑟𝑛𝑝) =
1

3
1

𝜌𝑛𝑝
‒

4𝜋𝑟 3
𝑛𝑝

3

   [6]

since the nanoparticle volume increases for a fixed simulation domain size.  In concert, equations 
5 & 6 are later used in a calculation that determines the chemisorption of oxygen at the 
nanoparticle surfaces as a function of depth into the deposit.  



Figure S5 (a) Multiple time snapshots of a single virtual particle trajectory (emulating diffusing O
2
) 

during select periods of interaction with the nanoparticle surface (emulating a Pt nanoparticle).  A total of 
10 snapshots are shown, each lasting 1.67ns.  The trajectory shading shows the initial position of the 
snapshot (black) to the end at 1.67ns (green).  The moment of collision between the diffusing virtual 
particle and the nanoparticle is shown as a red circle.  Ten random collision events were selected for 
display. (b) The particle tracking simulation converges to the particle impingement rate at large numbers 
of simulated jumps for a single diffusing particle.  Specifically, the mean impingement rate is calculated 
as the total number of collisions divided by the total elapsed simulation time and the nanoparticle surface 
area. A host of simulations were executed varying the nanoparticle radius in order to calculate the 
impingement rate as a function of the nanoparticle radius. 50,000,000 jumps are executed per simulation.  
In this example, five identical computer experiments are shown for a fixed nanoparticle radius of 1nm in a 
simulation domain with an edge length of ~3nm.  Notice the x–coordinate is log time and the computer 
experiment extends over 7-orders of magnitude in time up to the millisecond time scale.  The random 



nature of diffusion at the shortest time scales is evident but convergence is obtained at the millisecond 
time scale yielding a collision rate of 3.8x10

+8
 collisions per second for all 5 computer experiments.  

Thus, this value represents the molecular impingement rate, by diffusion, on the nanoparticle surface area 
(c) The results for multiple radii are shown (each data point was generated by one computer experiment 
such as that shown in (b).  The collision frequency increases as the nanoparticles grow because (1) the 
surface area of the nanoparticle increases yet (2) the (d) effective concentration is increasing for the each 
test simulation because the unoccupied volume is decreasing for the test particle.  The diffusion-based 
impingement is derived from these results taking into account the reference concentration used for each 
simulation.



Supplement 6

Transient nanoparticle growth within the deposit

Pt nanoparticle growth was found to occur during real purification experiments.  The model 
presented here for purification assumes that O2 must exhibit dissociative absorption for the 
oxidation reaction to occur.  Therefore, the available nanoparticle area per pixel is an important 
variable in the simulation and the method to account for this parameter is described below.

The nanoparticle density (np) and the mean nanoparticle radius in the initial deposit (rnp(i)) are 
used to determine the starting volume of platinum per voxel;

𝑉𝑃𝑡 = ∆𝑥3𝜌𝑛𝑝
4
3

𝜋𝑟 3
𝑛𝑝(𝑖)   [1]

and x3 is the initial voxel volume.  These are the required initial conditions in order to later 
account for O2 binding at nanoparticle surfaces.  Each deposit voxel is partitioned into two 
mathematical phases (1) pure Pt and (2) amorphous carbon (aC).  First, the term “mathematical 
phase” is used to signify that the nanoparticles do not have an actual spatial representation in the 
simulation but rather that a mean nanoparticle radius is calculated depending on the change in 
pixel size as aC is liberated.  We assume a simple cubic arrangement of nanoparticles in the 
following mathematical development for simplicity as the packing of nanoparticles is a weakly 
influential parameter in the simulation.  Importantly, the mathematical development here is 
performed in terms of a voxel implying a volume, i.e., three dimensions, but the final result 
below will ultimately be 1D which is compatible with the 1D transport simulation used to 
emulate the O2 reaction–diffusion.   Lastly, VPt is held constant during the simulation and 
purification ensues by a relative enrichment per pixel of Pt–to–aC.  The model for nanoparticle 
growth follows in light of these initial conditions, features and assumptions.

The nanoparticle surface area (np) as a function of time per voxel is;

𝜎𝑛𝑝(𝑧,𝑡) = 𝑉(𝑧,𝑡)𝜌𝑛𝑝4𝜋𝑟𝑛𝑝(𝑧,𝑡)2   [2]

and the volume per voxel is time–dependent;

𝑉(𝑧,𝑡) = ∆𝑥2∆𝑧(𝑡)  [3]

VPt is constant and z(t) is calculated directly from the simulation which makes it possible to 
solve for r(z,t) using equations 1 & 3 yielding;

𝑟𝑛𝑝(𝑧,𝑡) = 𝑟𝑛𝑝(𝑜)
3

∆𝑥
∆𝑧(𝑡)

   [4]

where the radius of the nanoparticles increases as aC is liberated.  Remember from above that 
the nanoparticle density per pixel (np) has been set as a constant.  However, within the context 



of the proposed model of a fixed VPt coupled with a shrinking pixel thickness, the nanoparticle 
density should increase as the pixel shrinks with a constant nanoparticle size during the 
simulation.  Therefore, the mathematical approach presented above makes it possible via the 
conservation of Pt volume per pixel to vary the nanoparticle radius at constant o while 
maintaining the computational advantage of a fixed VPt with a shrinking pixel size.  Lastly, it was 
initially enticing to model the nanoparticle growth process simply as an Ostwald ripening 
process.  The Ostwald ripening [1] equation is provided here;

〈𝑅〉3 ‒ 〈𝑅〉3
𝑜 =

8𝛾𝐶∞𝑣2𝐷

9𝑅𝑔𝑇
𝑡   [5]

where <R> is the average radius of the nanoparticle distribution,  is the nanoparticle surface 
energy, Cinf is the solubility of the nanoparticle, v is the molar volume, D is the diffusion 
coefficient of the Pt nanoparticles, Rg is the gas constant, T the temperature and t the time.  
However, the loss of aC causes a deposit contraction which also acts to bring relatively small 
nanoparticles into contact.  Thus, without detailed experimental knowledge regarding the 
transient nature of the nanoparticle morphology it was decided to use the more simple approach 
presented in this Supplement.

[1] W. Ostwald. 1896. Lehrbuch der Allgemeinen Chemie, vol. 2, part 1. Leipzig, Germany.



Supplement 7

Parameter ranges

Diffusion coefficient of O2 in aC (D)

A search range of 10-2–10+1 m2/s was selected for the diffusion coefficient.  This range was 
suggested by a plot of provided in [1] for a carbon matrix with glassy polymer properties.  For 
polymeric materials, the diffusion coefficient can be as high as 100–200 m2/s but simulations 
using these relatively high value of D didn’t replicate experimental findings and these relatively 
higher values are commonly associated with polymers that have a  more “rubbery” character. 

[1] Materials Science of Membranes for Gas and Vapor Systems, Eds., Y. Yampolskii, I. Pinnau 
and B. D. Freeman 2006 John Wiley & Sons, Ltd.

Sticking coefficient of O2 on Pt

The sticking coefficient of oxygen gas onto platinum surfaces was taken as 0.05 based on [2] 
which is low coverage value [7].  As stated in the main text, this value applies for vapor phase O2 
impinging on exposed Pt surfaces whereas we are extrapolating the use of this parameter to 
dissolved O2 impinging on buried Pt and the validity of this assumption is unknown.

[2] D. R. Monroe and R. P. Merrill, “Adsorption of Oxygen on Pt(111) and Its Reactivity to 
Hydrogen and Carbon Monoxide”, Journal of Catalysis 65, 461 (1980)

[7] C. T. Campbell, G. Ertl, H. Kuipers and J. Segner, “A Molecular Beam Study of the 
Adsorption and Desorption of Oxygen from a Pt(111) Surface”, Surface Science 107, 220 (1981)

Binding site density of O on Pt nanoparticle surface area

Reference [2] also reports 1 oxygen atom adsorbed per 4 Pt atoms on the (111) surface at 
saturated coverage.  An oxygen surface site density was estimated from this information 
according to;

𝑠𝑑 =

21.1[ 𝑔

𝑐𝑚3]6.02𝑥1023[𝑎𝑡𝑜𝑚𝑠

𝑐𝑚3 ]0.25[ 𝑂
𝑃𝑡 𝑎𝑡𝑜𝑚]

195.1[ 𝑔
𝑚𝑜𝑙]1𝑥1021[𝑛𝑚3

𝑐𝑚3]
= 16

𝑂

𝑛𝑚2
≅8

𝑂

𝑛𝑚2



and where the average Pt density was used instead of the Pt(111) planar density and the value 
used here of 8 O/nm2 reflects the fact that the total nanoparticle surface area exposes an average 
planar density less than the most densely packed (111) plane.

Adsorption energy of O & H2O on Pt

The adsorption energy for O2 on pure Pt surfaces is reported as ~(-4eV) in [3].  This yields a 
mean residence time of ~Inf for the lifetime of O on Pt relative to the time expired during real 
purification experiments executed at 298K.  H2O on the otherhand, has an adsorption energy of 
~(0.3eV) [3-4] which yields picosecond adsorption times at 298K.  Thus, for the H2O, adsorption 
on Pt surfaces may be neglected in simulations.  Similarly, [5] reports a bond enthalpy for X-Pt 
of ~3eV/atom for O and ~0.3eV/atom for H2O.  Campbell has reported [7-8] -2.8eV/atom on Pt 
thin films.

[3] G. S. Karlberg, “Adsorption trends for water, hydroxyl, oxygen and hydrogen on transition–
metal and platinum–skin surfaces”, Physical Review B 74, 153414 (2006)

[4] S. Meng, E. G. Wang and S. Gao, “Water adsorption on metal surfaces: A general picture 
from density functional theory studies”, Physical Review B 69, 195404 (2004)

[5] E. M. Karp, C. T. Campbell, F. Studt, F. Abild – Pedersen and J. K. Norskov, “The energetics 
of oxygen adatoms, hydroxyl species and water dissociation on Pt(111), Journal of Physical 
Chemistry C 46, 25772 (2012).

[8] D. Brennan, D. O. Hayward and B. M. W. Trapnell, “The Calorimetric Determination of the 
Heats of Adsorption of Oxygen on Evaporated Metal Films”, Proceedings of the Royal Society 
(London) A 256, 81 (1960)

Permeability coefficient of O in glassy polymers

The permeability coefficient at STP for a host a polymers is listed in [6] ranging from 1x10-13 - 
1x10-16 (cm3 STP)(cm)/(cm2 s Pa).  Reference [1] provides a range of 1x10-17 – 1x10-9.  Glassy 
polymers capable of including a relatively large void fraction can have permeability coefficients 
as high as 1x10-10 (cm3 STP)(cm)/(cm2 s Pa) [7].  Therefore, the range explored for a solution 
was 1x10-10–1x10-16 (cm3 STP)(cm)/(cm2 s Pa).

[6] W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering: An Introduction”, 
Version 9E, pg. 572 (2014)

[7] J. C. Salamone, “Polymeric Materials Encyclopedia”, Volume 9, Edition 12, pg. 6762 (1996)



Reaction rate constant (k)

Summary

The 2nd order reaction rate constant for a pair of interacting, mobile species in solution is 
provided below.  The empirical reaction rate law treatment implemented in the model, i.e., 
k[CeV][CO], suggests that the simulation results should be consistent with the fundamental 
derivation of the rate constant as provided in equation 1 below.  The aim of this supplement is to 
report the physically meaningful range for k and to test the consistency of simulation results with 
experiments.  A value of k = 4x10+3 nm3/eV/s predicted well experimental results for the 
purification of PtC5 with O2.  The effective diffusion coefficient DO2

eff is a meaningful parameter 
in the analysis of k.  The k value derived from simulations was tested by rearranging equation 1 
to solve for the interaction radius which should yield a result that lies between the radius of 
molecular oxygen (~0.3nm) and the radius of the nanoparticle + the electrons effective radius 
(taken as the maximum SE range; ~2.5nm). This was indeed the case.  Finally, the value of k 
reported falls within the range dictated by coupling to the diffusion coefficient range of 0.1–10 
nm2/s: because the binding interaction is strong, this interaction dominates transport and DO2

eff 
= 350nm2/s for both 0.1 and 10 m2/s.  As a result, the range of k depends on the physically 
relevant radius values, e.g., k = 4x350[nm2/s]0.3[nm] – 4x350[nm2/s]x2.5[nm] =1320 – 
11000 nm3/e- s, or k = 220 – 2200 nm3/eV/s assuming 5eV per SE.    Further details are provided 
below.

The reaction rate constant for a binary mixture of mobile particles is;

𝑘 = 4𝜋(𝐷1 + 𝐷2)(𝑟1 + 𝑟2)   [1]

where the subscripts 1 & 2 identify the two species of interest which are electrons and molecular 
oxygen, D is the diffusion coefficient and r is the molecular radius.  Inserting the variables of 
interest here yields

𝑘 = 4𝜋𝐷𝑒𝑓𝑓
𝑂2

(𝑟𝑂2
+ 𝑟𝑒𝑉)   [2]

The focused electron beam (~25nm) is significantly larger than the radius of a nanoparticle 
(~1nm) which only enlarges due to elastic electron scattering into the bulk.  As a result, the 
‘diffusion’ of electrons is not rate limiting for the electron beam–induced dissociation process 
because the electron energy loss falls uniformly over the nanoparticle surface area for relatively 
large primary beam currents on the order of pA–nA that act to uniformly impinge the beam area 
after a large number of random impacts. Thus, DeV was removed from the expression   



The effective diffusion for molecular oxygen is the relevant variable here because the 
dissociative chemisorption–associative desorption ultimately impacts the diffusion property from 
the point-of–view of equation 1.  Moreover, it is bound atomic oxygen that is dissociated by the 
electron beam with high probability.  In order to estimate the effective diffusion coefficient, the 
single particle tracking simulation described in S5 was further developed to include the 
binding/unbinding of the particle at the embedded nanoparticle surface (figure S7)   

In this binding + diffusion regime the effective diffusion coefficient (Deff
O2) is the relevant 

parameter for application in equation 2.  The relatively long mean residence time () of 12.5ms 
strongly affects the effective diffusion property as was confirmed using the single particle 
tracking Monte Carlo simulation described above with the addition of the following features.  

The single tracking particle simulation was modified to account for binding.  On impact with the 
nanoparticle surface, a binding test was executed based on the sticking probability () and the 
current oxygen coverage ()

𝑟𝑎𝑛𝑑 < 𝛿(1 ‒ 𝜃)   [2]

rand is a random number spanning the range 0–1 and  spans the same range for monolayer 
coverage.  A randomly sampled residence time was generated and added to the lapsed simulation 
time if the binding test was satisfied.  The random residence time was determined by;

𝑡𝑏𝑜𝑢𝑛𝑑 =‒ 𝜏ln (𝑟𝑎𝑛𝑑)   [3]

The particle is then released from the nanoparticle surface and allowed to freely diffuse after the 
addition of the randomly sampled residence time tbound.  Figure S5 shows the results of including 
the binding interaction on the particle mean squared displacement as a function of time.  The free 
diffusion coefficient of 4,000,000 nm2/s is reduced to Deff

O2=350 nm2/s due to the binding 
interaction.

Rearranging equation 1 and inserting values derived from the 5keV, 1800pA simulation;

𝑟𝑒𝑉 + 𝑟𝑛𝑝 = 𝑟𝑖≅
𝑘

4𝜋𝐷𝑒𝑓𝑓
=  

4000[𝑛𝑚3

𝑒𝑉 𝑠]
4 × 𝜋 × 350[𝑛𝑚2

𝑠 ]
= 0.9[𝑛𝑚

𝑒𝑉 ] [4]

where ri is the interaction radius.  The energy loss in equation 4 is converted to a per electron 
basis using a mean SE electron energy of 5eV/SE assuming that the energy loss pathway to 
secondary electrons drives the electron–induced surface reaction with bound atomic O on the Pt 
nanoparticles;

0.9[𝑛𝑚
𝑒𝑉 ]𝑥 5[ 𝑒𝑉

𝑒 ‒
𝑆𝐸

] = 4.5 𝑛𝑚



This result is considered promising as it agrees with what be expected from the summation of the 
nanoparticle radius and the mean free path of an excited SE electron which typically falls in the 
range of 0.5–3nm.  

Figure S7 The mean squared displacement <r2> vs elapsed time for a single particle that is 
executing random diffusive motion on a square lattice.  A portion of the free lattice volume is 
occupied by a single nanoparticle according to a nanoparticle site density of 3.25x10-2/nm2, a 
nanoparticle radius of 1nm and a simple cubic lattice.  The simulation domain edge length is 
chosen to preserve the nanoparticle site density (see S5).  The single particle has a binding 
probability to the nanoparticle surface defined by a sticking probability of 0.05 and a mean 
residence time of 12.5ms.  50,000,000 displacements were executed per particle in order to 



generate a <r2> vs time trace.  A total of 250 independent computer experiments were executed 
and averaged in <r2> to generate the data points (circles).  A linear fit to the data yields a slope 
equal to 6*D

eff
 according to <r2> = 6Dt, in this case, yielding D

eff
 = 350 nm2/s.

Supplement 8

Diffusion coefficient – reaction constant – solubility parameter space



Figure S8 (a) A space map of simulation parameters.  The 3D space has coordinates of mobile 
oxygen gas diffusion coefficient (D), solubility parameter (S) and the reaction constant (k).  The 
axes are displayed in log

10
.  Each white dot in space represents a single purification loop 

experiment for the 5keV O
2
 experimental condition provided in the Table S1.  Realistic 

solutions are confined to the region in space defined by the two superimposed planes; the S-k 
plane at D

o
 = 10 m2/s where realistic solutions fall within D

o
 < 10 m2/s and the D

o
-k plane at 

S=0.1 molecules/nm3/Torr for all solutions lying within S<0.1 molecules/nm3/Torr.  Five of the 



ten best solutions fell within the indicated range and are indicated by spheres.  Red spheres 
indicate contraction rates less than the experiments and green indicates contraction rates greater 
than that observed in experiments.  The relative size of the sphere indicates solution quality – the 
best solution has the larger sphere diameter and is also labeled with ‘1’ clarity.  (b-d) Parameter 
space map views highlighting all possible combinations of binary parameter pairs.

Supplement #9

Polymer-like amorphous carbon (aC) permeability coefficient



An aspect of the model for electron beam driven purification considered that O2 dissolved in the 
aC phase of the PtCx deposit.  This model was chosen based on previous reports of the polymer–
like nature of the aC in EBID deposits.  An O2 solubility in aC of S≈10-2 molecules/(nm3 Torr) 
yielded simulation results that were consistent with experimental purification rates and the PtCx 
final composition.  In order to test the assumption of a polymer–like aC phase the reported 
solubility is converted into a permeability coefficient () in order to compare with literature 
values reported for similar polymers.  The permeability coefficient is related to the S via;

Π = 𝐷𝑂2
𝑆   [1]

and DO2 is the diffusion coefficient of O2 in aC.  A diffusion coefficient on the order of 106 nm2/s 
yields a permeability coefficient of;

Π≅104[𝑛𝑚(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠)

𝑛𝑚2𝑇𝑜𝑟𝑟 𝑠 ]   [2]

In order to make an easier comparison with values reported in the literature the units are changed 

Π = 104[𝑛𝑚(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠)

𝑛𝑚2𝑇𝑜𝑟𝑟 𝑠 ]   
760 𝑇𝑜𝑟𝑟

101325 𝑃𝑎
107𝑛𝑚

𝑐𝑚
= 7.5𝑥108[𝑐𝑚(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠)

𝑐𝑚2𝑃𝑎 𝑠 ]   [4]

and the permeability is expressed at STP (298K, 1cm3, 1atm) as;

𝑛(1𝑎𝑡𝑚,1𝑐𝑚3,298𝐾) =
(101325𝑃𝑎) × (1𝑐𝑚3)

(8.314
𝐽

𝑚𝑜𝑙 𝐾) × (298𝐾)
∙

10 ‒ 6𝑚3

𝑐𝑚3
∙

6.02𝑥1023𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝑚𝑜𝑙

  [5]

Π = 7.5𝑥108[𝑐𝑚(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠)

𝑐𝑚2𝑃𝑎 𝑠 ] ×
(𝑐𝑚3𝑆𝑇𝑃)

2.462𝑥1019
≅10 ‒ 11[𝑐𝑚(𝑐𝑚3𝑆𝑇𝑃)

𝑐𝑚2𝑃𝑎 𝑠 ]   [6]

This value is characteristic of the upper limit of the permeability coefficient reported for typical 
polymeric materials.  The higher simulated permeability may be due to the porosity common in 
EBID deposits which has been shown to increase the effective solubility of dissolved gases and 
in commonly interpreted within the context of the dual sorption model.



Figure S9 A view of the (–Do) solution plane.  



Supplement #10

Simulation diagram

Figure S10  Computational flow diagram for a single purification loop.  The physical chemistry 
aspects and the transient nature of the materials properties have been specified.




