Supporting Information

Fluorination-dependent Molecular Orbital Occupancy in Ring-shaped Perfluorocarbons

Tim Brandenburg,^{a,b} Tristan Petit,^a Antje Neubauer,^a Kaan Atak,^{a,b} Masanari Nagasaka,^c Ronny Golnak,^{a,b} Nobuhiro Kosugi,^{c,**}Emad F. Aziz^{a,b,c,*}

^a Institute of Methods for Material Development, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany

^b Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

^c Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

AUTHOR INFORMATION

Corresponding Author

* emad.aziz@helmholtz-berlin.de

** kosugi@ims.ac.jp

Sup 1. Carbon K absorption calculations for all fluorination stages between decalin and PFD.

Sup 2. Carbon K emission calculations for all fluorination stages between decalin and PFD.

Sup 3. Carbon K absorption calculations for all fluorination stages between decalin and PFD, separated in absorption spectra of carbons with fluorine nearest neighbors and carbons with hydrogen nearest neighbors.

Sup 4. Carbon K emission calculations for all fluorination stages between decalin and PFD, separated in emission spectra of carbons with fluorine nearest neighbors and carbons with hydrogen nearest neighbors.

Sup 5. Comparison of absorption spectra obtained at both Synchrotron facilities (Bessy II and UVSOR). The spectra obtained at Bessy show clear effects of self-saturation, which result from the technique used to obtain these spectra (Total Fluorescence Yield). To circumvent this effect, another technique (Transmission) was employed where self-saturation effects do not occur.