Supplementary Information

Interaction of 4-imidazolemethanol with copper electrode revealed by isotope-edited SERS and theoretical modeling

Ieva Matulaitienė,^a Eglė Pociūtė,^b Zenonas Kuodis,^a Olegas Eicher-Lorka,^a and Gediminas Niaura^{*a}

^aDepartment of Organic Chemistry, Center for Physical Sciences and Technology, A. Gostauto 9, LT-01108, Vilnius, Lithuania ^bFaculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania

* To whom correspondence should be addressed. E-mail: (G.N.) gniaura@ktl.mii.lt.

Fig. S1 Raman spectra of (a) 0.5 M ImMeOH solution, (b) 10^{-4} M ImMeOH solution containing 0.1 M Na₂SO₄ and 0.01 M phosphate buffer (pH 7.0), and (c) SERS spectrum from roughened Cu electrode in 10^{-4} M ImMeOH solution containing 0.1 M Na₂SO₄ and 0.01 M phosphate buffer (pH 7.0) at -1.100 V potential. Excitation wavelength is 785 nm (30 mW).

Fig. S1 compares solution Raman and SERS spectra of ImMeOH. At 0.5 M concentration of ImMeOH Raman spectrum exhibits characteristic peaks associated with imidazole ring vibrations. However, only totally symmetric stretching vibrational mode of SO₄²⁻ anions at 981 cm⁻¹ and broad band due to scissoring deformation vibration of water molecules near 1642 cm⁻¹ are visible in the Raman spectrum of solution containing 10⁻⁴ M ImMeOH, 0.1 M Na₂SO₄ and 0.01 M phosphate buffer (pH 7.0). Nevertheless, intense SERS spectrum is visible from roughened Cu electrode immersed in this solution. Presented figure clearly demonstrates operation of SERS effect in the studied system.

Fig. S2 SERS spectra of phosphate anions adsorbed on Cu electrode at -0.600 and -1.000 V electrode potentials in 0.01 M phosphate buffer (pH 7.0) containing 0.1 M Na₂SO₄. Solution spectrum is subtracted. Measurement conditions: excitation wavelength, 785 nm; laser power at the sample, 30 mW; integration time, 300 s.

Fig. S3 Structures of Cu₆-ImMeOH-H₂O complexes optimized at DFT-B3LYP/6-311++G(d,p) level for C, H, N, and O atoms, and LANL2DZ with ECP for Cu atoms.

Atom	Tautomer-I			Tautomer-II		
	Surface-	Free	Difference	Surface-	Free	Difference
	bound		$(\Delta q_{\rm i})^{\rm a}$	bound		$(\Delta q_{\rm i})$
	complex			complex		3.
N1	-0.209	-0.246	0.037	0.111	-0.335	0.446
C2	-0.098	0.190	-0.288	-0.171	0.112	-0.283
N3	-0.055	-0.366	0.311	-0.105	-0.279	0.174
C4	0.061	0.492	-0.431	0.479	0.498	-0.019
C5	-0.261	-0.135	-0.126	-0.658	-0.186	-0.472
C6	-0.176	-0.644	0.468	-0.632	-0.510	-0.122
O7	-0.394	-0.373	-0.021	-0.300	-0.389	0.089
H8 ^a	0.184	0.167	0.017	0.161	0.155	0.006
H9	0.277	0.254	0.023	0.333	0.261	0.072
H10	0.165	0.156	0.009	0.178	0.140	0.038
H11	0.140	0.120	0.020	0.169	0.147	0.022
H12	0.111	0.134	-0.023	0.183	0.124	0.059
H13	0.366	0.251	0.115	0.259	0.262	-0.003
Total	0.111	0.000	0.111	0.007	0.000	0.007
charge of						
ImMeOH						

Table S1 Calculated Mulliken atom charges of Tautomer-I and –II of ImMeOH (Fig. 1) and model complexes Cu₆–ImMeOH of surface bound Tautomer-I and –II (Fig. 10)

^a Defined as: $\Delta q_j = q_j$ (complex) – q_j (free), for particular *j* atom; ^bLabeling of H atoms: C2–H8; N1–H9/N3–H9; C5–H10; C6–H11,H12; O7–H13.

Table S2Calculated bond lengths (pm) of Cu₆-Tautomer-I and Cu₆-Tautomer-IIstructures (Fig. 10) and corresponding surfaces complexes with added explicit watermolecule (Cu₆-Tautomer-I-H₂O and Cu₆-Tautomer-II-H₂O) (Fig. S3)

Bond	Tautomer-I			Tautomer-II		
	Surface-	Surface-	difference	Surface-	Surface-	Difference
	bound	bound		bound	bound	
	complex	complex		complex	complex	
		with			with	
		water			water	
C4=C5	136.55	136.93	-0.38	136.84	136.90	-0.06
C5-N1	137.85	138.07	-0.22	138.07	138.17	-0.10
C2-N1	135.23	135.63	-0.40	131.87	131.94	-0.07
C2-N3	131.65	131.80	-0.15	135.59	135.56	0.03
C4-N3	138.52	138.59	-0.07	137.98	137.75	0.23
C4–C6	149.66	149.85	-0.19	149.08	149.57	-0.49
C6–O7	142.11	143.23	-1.12	143.19	142.37	0.82
07–Н	97.25	98.09	-0.84	96.22	97.18	-0.96
Cu–N	203.32	202.18	1.14	203.54	203.07	0.47
Cu–O(water)	216.05					
O7–H(water)	184.68					
O7H–O(water) 187.63						